Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 20(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36547930

RESUMEN

κ-carrageenases are members of the glycoside hydrolase family 16 (GH16) that hydrolyze sulfated galactans in red algae, known as κ-carrageenans. In this study, a novel κ-carrageenase gene from the marine bacterium Rhodopirellula sallentina SM41 (RsCgk) was discovered via the genome mining approach. There are currently no reports on κ-carrageenase from the Rhodopirellula genus, and RsCgk shares a low identity (less than 65%) with κ- carrageenase from other genera. The RsCgk was heterologously overexpressed in Escherichia coli BL21 and characterized for its enzymatic properties. RsCgk exhibited maximum activity at pH 7.0 and 40 °C, and 50% of its initial activity was retained after incubating at 30 °C for 2 h. More than 70% of its activity was maintained after incubation at pH 6.0-8.0 and 4 °C for 24 h. As a marine derived enzyme, RsCgk showed excellent salt tolerance, retaining full activity in 1.2 M NaCl, and the addition of NaCl greatly enhanced its thermal stability. Mass spectrometry analysis of the RsCgk hydrolysis products revealed that the enzyme had high degradation specificity and mainly produced κ-carrageenan disaccharide. Comparative molecular dynamics simulations revealed that the conformational changes of tunnel-forming loops under salt environments may cause the deactivation or stabilization of RsCgk. Our results demonstrated that RsCgk could be utilized as a potential tool enzyme for efficient production of κ-carrageenan oligosaccharides under high salt conditions.


Asunto(s)
Tolerancia a la Sal , Cloruro de Sodio , Carragenina/química , Bacterias/metabolismo , Glicósido Hidrolasas/metabolismo , Proteínas Bacterianas/metabolismo
2.
Mar Drugs ; 20(2)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35200655

RESUMEN

As an important enzyme involved in the marine carbon cycle, alginate lyase has received extensive attention because of its excellent degradation ability on brown algae, which is widely utilized for alginate oligosaccharide preparation or bioethanol production. In comparison with endo-type alginate lyases (PL-5, PL-7, and PL-18 families), limited studies have focused on PL-17 family alginate lyases, especially for those with special characteristics. In this study, a novel PL-17 family alginate lyase, Aly23, was identified and cloned from the marine bacterium Pseudoalteromonas carrageenovora ASY5. Aly23 exhibited maximum activity at 35 °C and retained 48.93% of its highest activity at 4 °C, representing an excellent cold-adaptation property. Comparative molecular dynamics analysis was implemented to explore the structural basis for the cold-adaptation property of Aly23. Aly23 had a high substrate preference for poly ß-D-mannuronate and exhibited both endolytic and exolytic activities; its hydrolysis reaction mainly produced monosaccharides, disaccharides, and trisaccharides. Furthermore, the enzymatic hydrolyzed oligosaccharides displayed good antioxidant activities to reduce ferric and scavenge radicals, such as hydroxyl, ABTS+, and DPPH. Our work demonstrated that Aly23 is a promising cold-adapted biocatalyst for the preparation of natural antioxidants from brown algae.


Asunto(s)
Antioxidantes/farmacología , Oligosacáridos/farmacología , Polisacárido Liasas/metabolismo , Pseudoalteromonas/metabolismo , Antioxidantes/metabolismo , Disacáridos/metabolismo , Depuradores de Radicales Libres/metabolismo , Depuradores de Radicales Libres/farmacología , Hidrólisis , Simulación de Dinámica Molecular , Monosacáridos/metabolismo , Oligosacáridos/metabolismo , Polisacárido Liasas/aislamiento & purificación , Temperatura , Trisacáridos/metabolismo
3.
Microb Cell Fact ; 20(1): 3, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407464

RESUMEN

BACKGROUND: Biosynthesis of L-tert-leucine (L-tle), a significant pharmaceutical intermediate, by a cofactor regeneration system friendly and efficiently is a worthful goal all the time. The cofactor regeneration system of leucine dehydrogenase (LeuDH) and glucose dehydrogenase (GDH) has showed great coupling catalytic efficiency in the synthesis of L-tle, however the multi-enzyme complex of GDH and LeuDH has never been constructed successfully. RESULTS: In this work, a novel fusion enzyme (GDH-R3-LeuDH) for the efficient biosynthesis of L-tle was constructed by the fusion of LeuDH and GDH mediated with a rigid peptide linker. Compared with the free enzymes, both the environmental tolerance and thermal stability of GDH-R3-LeuDH had a great improved since the fusion structure. The fusion structure also accelerated the cofactor regeneration rate and maintained the enzyme activity, so the productivity and yield of L-tle by GDH-R3-LeuDH was all enhanced by twofold. Finally, the space-time yield of L-tle catalyzing by GDH-R3-LeuDH whole cells could achieve 2136 g/L/day in a 200 mL scale system under the optimal catalysis conditions (pH 9.0, 30 °C, 0.4 mM of NAD+ and 500 mM of a substrate including trimethylpyruvic acid and glucose). CONCLUSIONS: It is the first report about the fusion of GDH and LeuDH as the multi-enzyme complex to synthesize L-tle and reach the highest space-time yield up to now. These results demonstrated the great potential of the GDH-R3-LeuDH fusion enzyme for the efficient biosynthesis of L-tle.


Asunto(s)
Bacillus cereus/enzimología , Bacillus megaterium/enzimología , Glucosa 1-Deshidrogenasa/metabolismo , Leucina-Deshidrogenasa/metabolismo , Leucina/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Glucosa 1-Deshidrogenasa/química , Glucosa 1-Deshidrogenasa/genética , Leucina-Deshidrogenasa/química , Leucina-Deshidrogenasa/genética , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
4.
Biotechnol Bioeng ; 117(11): 3345-3355, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32678455

RESUMEN

With the aggravation of environmental pollution and energy crisis, the sustainable microbial fermentation process of converting glycerol to 1,3-propanediol (1,3-PDO) has become an attractive alternative. However, the difficulty in the online measurement of glycerol and 1,3-PDO creates a barrier to the fermentation process and then leads to the residual glycerol and therefore, its wastage. Thus, in the present study, the four-input artificial neural network (ANN) model was developed successfully to predict the concentration of glycerol, 1,3-PDO, and biomass with high accuracy. Moreover, an ANN model combined with a kinetic model was also successfully developed to simulate the fed-batch fermentation process accurately. Hence, a soft sensor from the ANN model based on NaOH-related parameters has been successfully developed which cannot only be applied in software to solve the difficulty of glycerol and 1,3-PDO online measurement during the industrialization process, but also offer insight and reference for similar fermentation processes.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Clostridium butyricum/metabolismo , Fermentación/fisiología , Redes Neurales de la Computación , Glicoles de Propileno , Reactores Biológicos/microbiología , Medios de Cultivo/análisis , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Glicerol/análisis , Glicerol/metabolismo , Cinética , Glicoles de Propileno/análisis , Glicoles de Propileno/metabolismo
5.
Microb Ecol ; 80(2): 475-486, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32100127

RESUMEN

Autism spectrum disorder (ASD) is a brain-based neurodevelopmental disorder characterized by behavioral abnormalities. Accumulating studies show that the gut microbiota plays a vital role in the pathogenesis of ASD, and gut microbiota transplantation (GMT) is a promising technique for the treatment of ASD. In clinical applications of GMT, it is challenging to obtain effective transplants because of the high costs of donor selection and heterogeneity of donors' gut microbiota, which can cause different clinical responses. In vitro batch culture is a fast, easy-to-operate, and repeatable method to culture gut microbiota. Thus, the present study investigates the feasibility of treating ASD with in vitro cultured gut microbiota as transplants. We cultured gut microbiota via the in vitro batch culture method and performed GMT in the maternal immune activation (MIA)-induced ASD mouse model with original donor microbiota and in vitro cultured microbiota. Open field, three-chamber social, marble burying, and self-grooming tests were used for behavioral improvement assessment. Serum levels of chemokines were detected. Microbial total DNA was extracted from mouse fecal samples, and 16S rDNA was sequenced using Illumina. Our results showed that GMT treatment with original and cultured donor gut microbiota significantly ameliorated anxiety-like and repetitive behaviors and improved serum levels of chemokines including GRO-α (CXCL1), MIP-1α (CCL3), MCP-3 (CCL7), RANTES (CCL5), and Eotaxin (CCL11) in ASD mice. Meanwhile, the gut microbial communities of the two groups that received GMT treatment were changed compared with the ASD mice groups. In the group treated with in vitro cultured donor gut microbiota, there was a significant decrease in the relative abundance of key differential taxa, including S24-7, Clostridiaceae, Prevotella_other, and Candidatus Arthromitus. The relative abundance of these taxa reached close to the level of healthy mice. Prevotella_other also decreased in the group treated with original donor gut microbiota, with a significant increase in Ruminococcaceae and Oscillospira. The present study demonstrated that GMT with in vitro cultured microbiota also improved behavioral abnormalities and chemokine disorders in an ASD mouse model compared with GMT with original donor gut microbiota. In addition, it significantly modified several key differential taxa in gut microbial composition.


Asunto(s)
Trastorno del Espectro Autista/terapia , Bacterias/metabolismo , Microbioma Gastrointestinal , Animales , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Biotechnol Bioeng ; 115(3): 684-693, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29105732

RESUMEN

1,3-propanediol production by Clostridium butyricum is a low productivity process due to the long time seed cultivation and thus hinders its industrial scale production. In the present study, repeated batch fermentation coupled with activated carbon adsorption strategy was first established which conduced not only to saving the time of seed cultivation and enhancing the productivity, but also to reducing the costs for the seed cultivation to achieve the purpose of 1,3-propanediol continuous production. The concentration of 1,3-propanediol from first to fourth cycle was 42.89, 45.78, 44.48, 42.39 (g/L), and the corresponding volumetric productivity was 2.14, 1.91, 1.85, 2.12 (g/L · h-1 ) respectively. More importantly, a relatively complete schematic diagram of the proposed metabolic pathways was firstly mapped out based on the intracellular metabolites analysis through GC-MS. At the same time, metabolic pathway and principal components analyses were carried out to give us deep insight into metabolic state. Many metabolites occurred to response to the stress in Cycle II. Even resting body formed and lipid accumulated owing to the worsening environment in the group without activated carbon in Cycle III. Thus, it demonstrated that activated carbon provided a favorable microenvironment for Clostridium butyricum in the repeated batch fermentation process to achieve the purpose of 1,3-propanediol continuous production.


Asunto(s)
Carbono/metabolismo , Clostridium butyricum/crecimiento & desarrollo , Glicoles de Propileno/metabolismo , Adsorción
7.
Crit Rev Biotechnol ; 37(8): 1024-1037, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28423958

RESUMEN

Multi-enzyme complexes have the potential to achieve high catalytic efficiency for sequence reactions due to their advantages in eliminating product inhibition, facilitating intermediate transfer and in situ regenerating cofactors. Constructing functional multi-enzyme systems to mimic natural multi-enzyme complexes is of great interest for multi-enzymatic biosynthesis and cell-free synthetic biotransformation, but with many challenges. Currently, various assembly strategies have been developed based on the interaction of biomacromolecules such as DNA, peptide and scaffolding protein. On the other hand, chemical-induced assembly is based on the affinity of enzymes with small molecules including inhibitors, cofactors and metal ions has the advantage of simplicity, site-to-site oriented structure control and economy. This review summarizes advances and progresses employing these strategies. Furthermore, challenges and perspectives in designing multi-enzyme systems are highlighted.


Asunto(s)
Enzimas/metabolismo , Biocatálisis , Biotransformación
8.
Physiol Plant ; 158(3): 356-365, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27145892

RESUMEN

Seaweed tissue culture (STC) is an important micropropagation tool that has been applied for strain improvement, micropropagation and genetic engineering. Because the mechanisms associated with STC are poorly understood, its application to these organisms lags far behind that of tissue culture propagation of higher plants. Auxin, calcium (Ca2+ ) and hydrogen peroxide (H2 O2 ) fluxes all play key roles during plant growth and development. In this study, we therefore measured indole-3-acetic acid, Ca2+ and H2 O2 fluxes of Gracilaria lichenoides explants during adventitious branches (ABs) formation for the first time using noninvasive micro-test technology. We confirmed that polar auxin transport (PAT) also occurs in the marine red alga G. lichenoides. We additionally found that N-1-naphthylphthalamic acid may suppress auxin efflux via ABCB1 transporters and then inhibit ABs formation from the apical region of G. lichenoides segments. The involvement of Ca2+ and H2 O2 fluxes in PAT-mediated AB formation in G. lichenoides was also investigated. We propose that complex feedback among Ca2+ , H2 O2 and auxin signaling and response systems may occur during ABs polar formation in G. lichenoides explants, similar to that in higher plants. Our results provide innovative insights that should aid future elucidation of mechanisms operative during STC.


Asunto(s)
Gracilaria/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Calcio/metabolismo , Gracilaria/fisiología , Peróxido de Hidrógeno/metabolismo , Microtecnología , Técnicas de Cultivo de Tejidos
9.
Appl Microbiol Biotechnol ; 100(19): 8425-37, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27198726

RESUMEN

Formate dehydrogenases (FDHs) are continually used for the cofactor regeneration in biocatalysis and biotransformation with hiring NAD(P)H-dependent oxidoreductases. Major weaknesses of most native FDHs are their low activity and operational stability in the catalytic reaction. In this work, the FDH from Candida boidinii (CboFDH) was engineered in order to gain an enzyme with high activity and better operational stability. Through comparing and analyzing its spatial structure with other FDHs, the catalysis, substrate, and coenzyme binding sites of the CboFDH were identified. To improve its performance, amino acids, which concentrated on the enzyme active site or in the conserved NAD(+) and substrate binding motif, were mutated. The mutant V120S had the highest catalytic efficiency (k cat/K m ) with COONH4 as it enhanced the catalytic velocity (k cat) and k cat/K m 3.48-fold and 1.60-fold, respectively, than that of the wild type. And, the double-mutant V120S-N187D had the highest k cat/K m with NAD(+) as it displayed an approximately 1.50-fold increase in k cat/K m . The mutants showed higher catalytic efficiency than other reported FDHs, suggesting that the mutation has achieved good results. The single and double mutants exhibited higher thermostability than the wild type. The structure-function relationship of single and double mutants was analyzed by homology models and site parsing. Asymmetric synthesis of L-tert-leucine was executed to evaluate the ability of cofactor regeneration of the mutants with about 100 % conversion rates. This work provides a helpful theoretical reference for the evolution of an enzyme in vitro and promotion of the industrial production of chiral compounds, e.g., amino acid and chiral amine.


Asunto(s)
Candida/enzimología , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Ingeniería de Proteínas , Sustitución de Aminoácidos , Sitios de Unión , Dominio Catalítico , Coenzimas/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , NAD/metabolismo
10.
J Ind Microbiol Biotechnol ; 43(5): 577-84, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26819086

RESUMEN

Phenylalanine dehydrogenase (PheDH) plays an important role in enzymatic synthesis of L-phenylalanine for aspartame (sweetener) and detection of phenylketonuria (PKU), suggesting that it is important to obtain a PheDH with excellent characteristics. Gene fusion of PheDH and formate dehydrogenase (FDH) was constructed to form bifunctional multi-enzymes for bioconversion of L-phenylalanine coupled with coenzyme regeneration. Comparing with the PheDH monomer from Microbacterium sp., the bifunctional PheDH-FDH showed noteworthy stability under weakly acidic and alkaline conditions (pH 6.5-9.0). The bifunctional enzyme can produce 153.9 mM L-phenylalanine with remarkable performance of enantiomers choice by enzymatic conversion with high molecular conversion rate (99.87 %) in catalyzing phenylpyruvic acid to L-phenylalanine being 1.50-fold higher than that of the separate expression system. The results indicated the potential application of the PheDH and PheDH-FDH with coenzyme regeneration for phenylpyruvic acid analysis and L-phenylalanine biosynthesis in medical diagnosis and pharmaceutical field.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Coenzimas/biosíntesis , Formiato Deshidrogenasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/genética , Bacillus/enzimología , Candida/enzimología , Coenzimas/metabolismo , Estabilidad de Enzimas , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/genética , Formiatos/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Fenilalanina/biosíntesis , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Proteínas Recombinantes de Fusión/genética , Estereoisomerismo , Temperatura
11.
Acta Biochim Biophys Sin (Shanghai) ; 46(6): 477-83, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24742431

RESUMEN

pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae.


Asunto(s)
Aspergillus oryzae/metabolismo , Eliminación de Gen , Genes Fúngicos , Vino , Aspergillus oryzae/genética , Secuencia de Bases , Cartilla de ADN , Fermentación , Mutación , Plásmidos
12.
13.
Front Bioeng Biotechnol ; 10: 826008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35145960

RESUMEN

With the advancement of science, technology, and productivity, the rapid development of industrial production, transportation, and the exploitation of fossil fuels has gradually led to the accumulation of greenhouse gases and deterioration of global warming. Carbon neutrality is a balance between absorption and emissions achieved by minimizing carbon dioxide (CO2) emissions from human social productive activity through a series of initiatives, including energy substitution and energy efficiency improvement. Then CO2 was offset through forest carbon sequestration and captured at last. Therefore, efficiently reducing CO2 emissions and enhancing CO2 capture are a matter of great urgency. Because many species have the natural CO2 capture properties, more and more scientists focus their attention on developing the biological carbon sequestration technique and further combine with synthetic biotechnology and electricity. In this article, the advances of the synthetic biotechnology method for the most promising organisms were reviewed, such as cyanobacteria, Escherichia coli, and yeast, in which the metabolic pathways were reconstructed to enhance the efficiency of CO2 capture and product synthesis. Furthermore, the electrically driven microbial and enzyme engineering processes are also summarized, in which the critical role and principle of electricity in the process of CO2 capture are canvassed. This review provides detailed summary and analysis of CO2 capture through synthetic biotechnology, which also pave the way for implementing electrically driven combined strategies.

14.
Food Funct ; 13(11): 6329-6337, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35611943

RESUMEN

The intestine is a potential location for berberine (BBR) to exert its therapeutic effects, but the understanding of the influences of BBR on the gut microbiota is limited. Through in vitro fermentation of human intestinal microbiota, we investigated the effects of BBR on microbiota composition and metabolism. The result indicated that BBR reduced the production of acetic acid and propionic acid and had no effect on the content of butyric acid. Analysis of the 16S rRNA gene-based community revealed that BBR increased the abundance of Faecalibacterium and decreased the abundance of Bifidobacterium, Streptococcus and Enterococcus. Through metabolomics analysis, BBR treatment regulated various amino acid metabolism pathways of intestinal microbiota, especially tyrosine, serine and L-glutamate. Our study presented direct impacts of BBR on the intestinal microbiota, which provided the probable targets of the therapies by BBR and supported further exploration of the underlying mechanisms.


Asunto(s)
Berberina , Microbioma Gastrointestinal , Aminoácidos/farmacología , Berberina/farmacología , Humanos , Intestinos , ARN Ribosómico 16S/genética
15.
Front Nutr ; 9: 851402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284441

RESUMEN

Dietary bioactive lipids, one of the three primary nutrients, is not only essential for growth and provides nutrients and energy for life's activities but can also help to guard against disease, such as Alzheimer's and cardiovascular diseases, which further strengthen the immune system and maintain many body functions. Many microorganisms, such as yeast, algae, and marine fungi, have been widely developed for dietary bioactive lipids production. These biosynthetic processes were not limited by the climate and ground, which are also responsible for superiority of shorter periods and high conversion rate. However, the production process was also exposed to the challenges of low stability, concentration, and productivity, which was derived from the limited knowledge about the critical enzyme in the metabolic pathway. Fortunately, the development of enzymatic research methods provides powerful tools to understand the catalytic process, including site-specific mutagenesis, protein dynamic simulation, and metabolic engineering technology. Thus, we review the characteristics of critical desaturase and elongase involved in the fatty acids' synthesis metabolic pathway, which aims to not only provide extensive data for enzyme rational design and modification but also provides a more profound and comprehensive understanding of the dietary bioactive lipids' synthetic process.

16.
Front Nutr ; 9: 914273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548576

RESUMEN

[This corrects the article DOI: 10.3389/fnut.2022.851402.].

17.
Nat Commun ; 13(1): 102, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013238

RESUMEN

The systematic design of functional peptides has technological and therapeutic applications. However, there is a need for pattern-based search engines that help locate desired functional motifs in primary sequences regardless of their evolutionary conservation. Existing databases such as The Protein Secondary Structure database (PSS) no longer serves the community, while the Dictionary of Protein Secondary Structure (DSSP) annotates the secondary structures when tertiary structures of proteins are provided. Here, we extract 1.7 million helices from the PDB and compile them into a database (Therapeutic Peptide Design database; TP-DB) that allows queries of compounded patterns to facilitate the identification of sequence motifs of helical structures. We show how TP-DB helps us identify a known purification-tag-specific antibody that can be repurposed into a diagnostic kit for Helicobacter pylori. We also show how the database can be used to design a new antimicrobial peptide that shows better Candida albicans clearance and lower hemolysis than its template homologs. Finally, we demonstrate how TP-DB can suggest point mutations in helical peptide blockers to prevent a targeted tumorigenic protein-protein interaction. TP-DB is made available at http://dyn.life.nthu.edu.tw/design/ .


Asunto(s)
Aminoácidos/química , Péptidos Antimicrobianos/química , Antineoplásicos/química , Programas Informáticos , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Bases de Datos de Proteínas , Diseño de Fármacos/métodos , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica en Hélice alfa , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Relación Estructura-Actividad
18.
Wei Sheng Wu Xue Bao ; 51(4): 504-9, 2011 Apr.
Artículo en Zh | MEDLINE | ID: mdl-21796985

RESUMEN

OBJECTIVE: To improve expression level of glycerol dehydrogenase gene gldA in Escherichia coli by means of codon optimization. METHODS: For immediately downstream region of initiation codon in gldA, we designed optimized sequence by choosing higher AT-content synonymous, in order that this region's AT-content was increased without changing the corresponding amino acids. Then we had wild gene gldA-WT site-directed mutagenesis depending on mega-primers PCR, so that physically optimized gene gldA-4 was acquired. We cloned gldA-4 into pET-32a(+) to construct expression plasmid pET-gldA4, which was transformed into Escherichia coli BL21 (DE3) for gaining engineering bacteria E. coli-4, by contrast engineering bacteria involved gldA-WT named E. coli-WT. After E. coli-4 and E. coli-WT were fermented in shake flasks,we measured enzyme activities of expression products with glycerol as substrate. RESULTS: Four gldA-4's bases in the second, fifth and sixth codon were different with gldA-WT, so AT-content of the optimized gene was up to 80.0% higher than the wild gene's 53.3%. Furthermore, enzyme activity of E. coli-4's crude extract was 191.3 U/mL more three times than E. coli-WT's 48.3 U/mL. CONCLUSION: This optimization scheme was quick and easy, but indeed increased dehydrogenase's activity. It possible becomes a universal method to improve heterogenous expression level of target genes.


Asunto(s)
Proteínas Bacterianas/genética , Codón , Escherichia coli/genética , Expresión Génica , Klebsiella pneumoniae/enzimología , Deshidrogenasas del Alcohol de Azúcar/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Glicerol/metabolismo , Ingeniería de Proteínas , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo
19.
Wei Sheng Wu Xue Bao ; 51(7): 948-55, 2011 Jul.
Artículo en Zh | MEDLINE | ID: mdl-22043796

RESUMEN

OBJECTIVE: We investigated the structure model and function of xylitol dehydrogenase from Aspergillus oryzae. METHODS: Xylitol dehydrogenase (XDH) gene from Aspergillus oryzae was cloned and sequenced. We constructed four tertiary structure models of XDH by homology modeling with Swiss-MODEL and Modeller and obtained the best quality model by evaluation of PROCHECK and Prosa2003. The dockings of NAD+, Zn2+ and xylitol with XDH were performed by Molsoft program. RESULTS: Structure analysis suggested that XDH was a member of medium-chain dehydrogenase/reductase (MDR) family. This was supported by the presence of the zinc-containing alcohol dehydrogenase signature and a typical alcohol dehydrogenase Rossmann fold pattern composed by NAD+ binding domain present in MDR superfamily. The molecular docking indicated that amino acid residues Asp206, Arg211, Ser255, Ser301 and Arg303 in XDH binding domain had hydrogen bonding with NAD+, His72 and Glu73 in catalytic domain had hydrogen bonding with Zn2+, Ile46, Ile349, Lys350 and Thr351 in catalytic domain had hydrogen bonding with xylitol. CONCLUSION: These key amino acid residues might play a vital role in the XDH catalytic reaction and can instruct the further directed modification of XDH.


Asunto(s)
Aspergillus oryzae/enzimología , D-Xilulosa Reductasa/química , Modelos Moleculares , Secuencia de Aminoácidos , Dominio Catalítico , Datos de Secuencia Molecular
20.
Synth Syst Biotechnol ; 6(3): 209-215, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34466691

RESUMEN

Biomarkers of disease, especially protein, show great potential for diagnosis and prognosis. For detecting a certain protein, a binding assay implementing antibodies is commonly performed. However, antibodies are not thermally stable and may cause false-positive when the sample composition is complicated. In recent years, a functional nucleic acid named aptamer has been used in many biochemical analysis cases, which is commonly selected from random sequence libraries by using the systematic evolution of ligands by exponential enrichment (SELEX) techniques. Compared to antibodies, the aptamer is more thermal stable, easier to be modified, conjugated, and amplified. Herein, an Aptamer-Based Cell-free Detection (ABCD) system was proposed to detect target protein, using epithelial cell adhesion molecule (EpCAM) as an example. We combined the robustness of aptamer in binding specificity with the signal amplification ability of CRISPR-Cas12a's trans-cleavage activity in the ABCD system. We also demonstrated that the ABCD system could work well to detect target protein in a relatively low limit of detection (50-100 nM), which lay a foundation for the development of portable detection devices. This work highlights the superiority of the ABCD system in detecting target protein with low abundance and offers new enlightenment for future design and development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA