Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Immunity ; 47(1): 66-79.e5, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28723554

RESUMEN

Hypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell-intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF-κB signaling and a transcription factor E2F1-dependent metabolic pathway by the cytokine RANKL. Downregulation of COMMD1 protein expression by hypoxia augmented RANKL-induced expression of inflammatory and E2F1 target genes and downstream osteoclastogenesis. E2F1 targets included glycolysis and metabolic genes including CKB that enabled cells to meet metabolic demands in challenging environments, as well as inflammatory cytokine-driven target genes. Expression quantitative trait locus analysis linked increased COMMD1 expression with decreased bone erosion in rheumatoid arthritis. Myeloid deletion of Commd1 resulted in increased osteoclastogenesis in arthritis and inflammatory osteolysis models. These results identify COMMD1 and an E2F-metabolic pathway as key regulators of osteoclastogenic responses under pathological inflammatory conditions and provide a mechanism by which hypoxia augments inflammation and bone destruction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Artritis Reumatoide/inmunología , Macrófagos/inmunología , Osteogénesis/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/metabolismo , Femenino , Humanos , Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal
3.
Adv Exp Med Biol ; 1433: 139-165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37751139

RESUMEN

Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark. Here we address the roles of lysine demethylases JMJD3 and UTX in physiological and disease contexts. The two demethylases play pivotal roles in many developmental and disease contexts via regulation of di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) in repressing gene expression programs. JMJD3 and UTX participate in several biochemical settings including methyltransferase and chromatin remodeling complexes. They have histone demethylase-dependent and -independent activities and a variety of context-specific interacting factors. The structure, amounts, and function of the demethylases can be altered in disease due to genetic alterations or aberrant gene regulation. Therefore, academic and industrial initiatives have targeted these enzymes using a number of small molecule compounds in therapeutic approaches. In this chapter, we will touch upon inhibitor formulations, their properties, and current efforts to test them in preclinical contexts to optimize their therapeutic outcomes. Demethylase inhibitors are currently used in targeted therapeutic approaches that might be particularly effective when used in conjunction with systemic approaches such as chemotherapy.


Asunto(s)
Epigénesis Genética , Lisina , Epigenómica , Histona Demetilasas/genética , Histonas/genética
4.
J Immunol ; 196(11): 4452-4456, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27183582

RESUMEN

Osteoclasts are resorptive cells that are important for homeostatic bone remodeling and pathological bone resorption. Emerging evidence suggests an important role for epigenetic mechanisms in osteoclastogenesis. A recent study showed that epigenetic silencing of the negative regulator of osteoclastogenesis Irf8 by DNA methylation is required for osteoclast differentiation. In this study, we investigated the role of EZH2, which epigenetically silences gene expression by histone methylation, in osteoclastogenesis. Inhibition of EZH2 by the small molecule GSK126, or decreasing its expression using antisense oligonucleotides, impeded osteoclast differentiation. Mechanistically, EZH2 was recruited to the IRF8 promoter after RANKL stimulation to deposit the negative histone mark H3K27me3 and downregulate IRF8 expression. GSK126 attenuated bone loss in the ovariectomy mouse model of postmenopausal osteoporosis. Our findings provide evidence for an additional mechanism of epigenetic IRF8 silencing during osteoclastogenesis that likely works cooperatively with DNA methylation, further emphasizing the importance of IRF8 as a negative regulator of osteoclastogenesis.


Asunto(s)
Diferenciación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Silenciador del Gen , Factores Reguladores del Interferón/genética , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis/genética , Animales , Humanos , Factores Reguladores del Interferón/biosíntesis , Ratones , Ratones Endogámicos C3H
5.
Proc Natl Acad Sci U S A ; 112(52): 15982-7, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668366

RESUMEN

During meiotic recombination, double-strand breaks (DSBs) are formed in chromosomal DNA and then repaired as either crossovers (COs) or non-crossovers (NCOs). In most taxa, the number of DSBs vastly exceeds the number of COs. COs are required for generating genetic diversity in the progeny, as well as proper chromosome segregation. Their formation is tightly controlled so that there is at least one CO per pair of homologous chromosomes whereas the maximum number of COs per chromosome pair is fairly limited. One of the main mechanisms controlling the number of recombination events per meiosis is CO homeostasis, which maintains a stable CO number even when the DSB number is dramatically altered. The existence of CO homeostasis has been reported in several species, including mouse, yeast, and Caenorhabditis elegans. However, it is not known whether homeostasis exists in the same form in all species. In addition, the studies of homeostasis have been conducted using mutants and/or transgenic lines exhibiting fairly severe meiotic phenotypes, and it is unclear how important homeostasis is under normal physiological conditions. We found that, in maize, CO control is robust only to ensure one CO per chromosome pair. However, once this limit is reached, the CO number is linearly related to the DSB number. We propose that CO control is a multifaceted process whose different aspects have a varying degree of importance in different species.


Asunto(s)
Intercambio Genético , Homeostasis/genética , Recombinación Homóloga , Zea mays/genética , Animales , Cromatina/genética , Cromatina/metabolismo , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Roturas del ADN de Doble Cadena , Meiosis/genética , Ratones , Microscopía Fluorescente , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
6.
Eur J Immunol ; 45(1): 287-297, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25345375

RESUMEN

Disruption of the interaction of bromo and extraterminal (BET) proteins with acetylated histones using small molecule inhibitors suppresses Myc-driven cancers and TLR-induced inflammation in mouse models. The predominant mechanism of BET inhibitor action is to suppress BET-mediated recruitment of positive transcription elongation factor b and, thus, transcription elongation. We investigated the effects of BET inhibitor I-BET151 on transcriptional responses to TLR4 and TNF in primary human monocytes and also on responses to cytokines IFN-ß, IFN-γ, IL-4, and IL-10, which activate the JAK-STAT signaling pathway and are important for monocyte polarization and inflammatory diseases. I-BET151 suppressed TLR4- and TNF-induced IFN responses by diminishing both autocrine IFN-ß expression and transcriptional responses to IFN-ß. I-BET151 inhibited cytokine-induced transcription of STAT targets in a gene-specific manner without affecting STAT activation or recruitment. This inhibition was independent of Myc or other upstream activators. IFN-stimulated gene transcription is regulated primarily at the level of transcription initiation. Accordingly, we found that I-BET151 suppressed the recruitment of transcriptional machinery to the CXCL10 promoter and an upstream enhancer. Our findings suggest that BET inhibition reduces inflammation partially through suppressing cytokine activity and expands the understanding of the inhibitory and potentially selective immunosuppressive effects of inhibiting BET proteins.


Asunto(s)
Quimiocina CXCL10/genética , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Quinasas Janus/genética , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción STAT/genética , Diferenciación Celular , Quimiocina CXCL10/antagonistas & inhibidores , Quimiocina CXCL10/inmunología , Regulación de la Expresión Génica , Humanos , Interferón beta/genética , Interferón beta/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-4/genética , Interleucina-4/inmunología , Quinasas Janus/inmunología , Macrófagos/citología , Macrófagos/inmunología , Monocitos/citología , Monocitos/inmunología , Fosforilación , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/inmunología , Factores de Transcripción STAT/inmunología , Transducción de Señal
7.
Leukemia ; 34(10): 2561-2575, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32690881

RESUMEN

DNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias. Cohesin and CTCF are critical for mediating looping and establishing boundaries within chromatin. Cells that harbor mutations in these genes display aberrant chromatin architecture and resulting differences in gene expression that contribute to leukemia initiation and progression. Here, we provide detailed discussion of the nature of 3D interactions and the way that they are disrupted in acute leukemia. Continued research in this area will provide new insights into the mechanisms of leukemogenesis and may shed light on novel treatment strategies.


Asunto(s)
Cromatina/metabolismo , Leucemia/metabolismo , Enfermedad Aguda , Factor de Unión a CCCTC/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia/genética , Mutación
8.
Genome Biol ; 21(1): 247, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933554

RESUMEN

BACKGROUND: The three-dimensional genome organization is critical for gene regulation and can malfunction in diseases like cancer. As a key regulator of genome organization, CCCTC-binding factor (CTCF) has been characterized as a DNA-binding protein with important functions in maintaining the topological structure of chromatin and inducing DNA looping. Among the prolific binding sites in the genome, several events with altered CTCF occupancy have been reported as associated with effects in physiology or disease. However, hitherto there is no comprehensive survey of genome-wide CTCF binding patterns across different human cancers. RESULTS: To dissect functions of CTCF binding, we systematically analyze over 700 CTCF ChIP-seq profiles across human tissues and cancers and identify cancer-specific CTCF binding patterns in six cancer types. We show that cancer-specific lost and gained CTCF binding events are associated with altered chromatin interactions, partially with DNA methylation changes, and rarely with sequence mutations. While lost bindings primarily occur near gene promoters, most gained CTCF binding events exhibit enhancer activities and are induced by oncogenic transcription factors. We validate these findings in T cell acute lymphoblastic leukemia cell lines and patient samples and show that oncogenic NOTCH1 induces specific CTCF binding and they cooperatively activate expression of target genes, indicating transcriptional condensation phenomena. CONCLUSIONS: Specific CTCF binding events occur in human cancers. Cancer-specific CTCF binding can be induced by other transcription factors to regulate oncogenic gene expression. Our results substantiate CTCF binding alteration as a functional epigenomic signature of cancer.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Metilación de ADN , Humanos , Oncogenes , Receptor Notch1/metabolismo
9.
Cancer Discov ; 10(9): 1388-1409, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32444465

RESUMEN

Splicing alterations are common in diseases such as cancer, where mutations in splicing factor genes are frequently responsible for aberrant splicing. Here we present an alternative mechanism for splicing regulation in T-cell acute lymphoblastic leukemia (T-ALL) that involves posttranslational stabilization of the splicing machinery via deubiquitination. We demonstrate there are extensive exon skipping changes in disease, affecting proteasomal subunits, cell-cycle regulators, and the RNA machinery. We present that the serine/arginine-rich splicing factors (SRSF), controlling exon skipping, are critical for leukemia cell survival. The ubiquitin-specific peptidase 7 (USP7) regulates SRSF6 protein levels via active deubiquitination, and USP7 inhibition alters the exon skipping pattern and blocks T-ALL growth. The splicing inhibitor H3B-8800 affects splicing of proteasomal transcripts and proteasome activity and acts synergistically with proteasome inhibitors in inhibiting T-ALL growth. Our study provides the proof-of-principle for regulation of splicing factors via deubiquitination and suggests new therapeutic modalities in T-ALL. SIGNIFICANCE: Our study provides a new proof-of-principle for posttranslational regulation of splicing factors independently of mutations in aggressive T-cell leukemia. It further suggests a new drug combination of splicing and proteasomal inhibitors, a concept that might apply to other diseases with or without mutations affecting the splicing machinery.This article is highlighted in the In This Issue feature, p. 1241.


Asunto(s)
Empalme Alternativo/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Fosfoproteínas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Factores de Empalme Serina-Arginina/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Empalme Alternativo/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Sinergismo Farmacológico , Exones/genética , Humanos , Células Jurkat , Masculino , Ratones , Piperazinas/farmacología , Piperazinas/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Prueba de Estudio Conceptual , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Transgend Health ; 3(1): 71-73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29756045

RESUMEN

Dermatologic care plays an important role in the transitioning process for transgender women, with changes occurring to the skin from hormone therapy (HT) and gender affirming procedures. We sought to identify knowledge gaps in a group of transgender women pertaining to both skin and hair changes during the transitioning process. The study was conducted as a cross-sectional survey. Our results demonstrate potential gaps in knowledge that transgender women have regarding HT and gender affirming procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA