Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 300(5): 107260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582447

RESUMEN

Thoracic aortic dissection (TAD) is a highly dangerous cardiovascular disorder caused by weakening of the aortic wall, resulting in a sudden tear of the internal face. Progressive loss of the contractile apparatus in vascular smooth muscle cells (VSMCs) is a major event in TAD. Exploring the endogenous regulators essential for the contractile phenotype of VSMCs may aid the development of strategies to prevent TAD. Krüppel-like factor 15 (KLF15) overexpression was reported to inhibit TAD formation; however, the mechanisms by which KLF15 prevents TAD formation and whether KLF15 regulates the contractile phenotype of VSMCs in TAD are not well understood. Therefore, we investigated these unknown aspects of KLF15 function. We found that KLF15 expression was reduced in human TAD samples and ß-aminopropionitrile monofumarate-induced TAD mouse model. Klf15KO mice are susceptible to both ß-aminopropionitrile monofumarate- and angiotensin II-induced TAD. KLF15 deficiency results in reduced VSMC contractility and exacerbated vascular inflammation and extracellular matrix degradation. Mechanistically, KLF15 interacts with myocardin-related transcription factor B (MRTFB), a potent serum response factor coactivator that drives contractile gene expression. KLF15 silencing represses the MRTFB-induced activation of contractile genes in VSMCs. Thus, KLF15 cooperates with MRTFB to promote the expression of contractile genes in VSMCs, and its dysfunction may exacerbate TAD. These findings indicate that KLF15 may be a novel therapeutic target for the treatment of TAD.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección de la Aorta Torácica , Factores de Transcripción de Tipo Kruppel , Miocitos del Músculo Liso , Factores de Transcripción , Animales , Humanos , Masculino , Ratones , Angiotensina II/metabolismo , Angiotensina II/farmacología , Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fenotipo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
J Biol Chem ; 299(10): 105226, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37673339

RESUMEN

Successful muscle regeneration following injury is essential for functional homeostasis of skeletal muscles. Krüppel-like factor 15 (KLF15) is a metabolic transcriptional regulator in the muscles. However, little is known regarding its function in muscle regeneration. Here, we examined microarray datasets from the Gene Expression Omnibus database, which indicated downregulated KLF15 in muscles from patients with various muscle diseases. Additionally, we found that Klf15 knockout (Klf15KO) impaired muscle regeneration following injury in mice. Furthermore, KLF15 expression was robustly induced during myoblast differentiation. Myoblasts with KLF15 deficiency showed a marked reduction in their fusion capacity. Unbiased transcriptome analysis of muscles on day 7 postinjury revealed downregulated genes involved in cell differentiation and metabolic processes in Klf15KO muscles. The FK506-binding protein 51 (FKBP5), a positive regulator of myoblast differentiation, was ranked as one of the most strongly downregulated genes in the Klf15KO group. A mechanistic search revealed that KLF15 binds directly to the promoter region of FKBP5 and activates FKBP5 expression. Local delivery of FKBP5 rescued the impaired muscle regeneration in Klf15KO mice. Our findings reveal a positive regulatory role of KLF15 in myoblast differentiation and muscle regeneration by activating FKBP5 expression. KLF15 signaling may be a novel therapeutic target for muscle disorders associated with injuries or diseases.


Asunto(s)
Mioblastos , Proteínas de Unión a Tacrolimus , Animales , Humanos , Ratones , Diferenciación Celular/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Regeneración/genética , Proteínas de Unión a Tacrolimus/metabolismo , Masculino , Ratones Endogámicos C57BL
3.
Biochem Biophys Res Commun ; 710: 149910, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38593619

RESUMEN

Ginsenoside Rb1 (Rb1), an active component isolated from traditional Chinese medicine Ginseng, is beneficial to many cardiovascular diseases. However, whether it can protect against doxorubicin induced cardiotoxicity (DIC) is not clear yet. In this study, we aimed to investigate the role of Rb1 in DIC. Mice were injected with a single dose of doxorubicin (20 mg/kg) to induce acute cardiotoxicity. Rb1 was given daily gavage to mice for 7 days. Changes in cardiac function, myocardium histopathology, oxidative stress, cardiomyocyte mitochondrion morphology were studied to evaluate Rb1's function on DIC. Meanwhile, RNA-seq analysis was performed to explore the potential underline molecular mechanism involved in Rb1's function on DIC. We found that Rb1 treatment can improve survival rate and body weight in Dox treated mice group. Rb1 can attenuate Dox induced cardiac dysfunction and myocardium hypertrophy and interstitial fibrosis. The oxidative stress increase and cardiomyocyte mitochondrion injury were improved by Rb1 treatment. Mechanism study found that Rb1's beneficial role in DIC is through suppressing of autophagy and ferroptosis. This study shown that Ginsenoside Rb1 can protect against DIC by regulating autophagy and ferroptosis.


Asunto(s)
Cardiotoxicidad , Ferroptosis , Ginsenósidos , Animales , Ratones , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Cardiotoxicidad/prevención & control , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Ginsenósidos/farmacología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo
4.
BMC Med Genet ; 18(1): 15, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28196537

RESUMEN

BACKGROUND: Hemophagocytic lymphohistocytosis (HLH) is a rare but fatal hyperinflammatory syndrome caused by uncontrolled proliferation of activated macrophages and T lymphocytes secreting high amounts of inflammatory cytokines. Genetic defect is a common cause of HLH. HLH is complicated to be diagnosed as there are many common symptoms with other disorders. CASE PRESENTATION: Here we report on an HLH case caused by 1 bp deletion in gene SH2D1A. Patient was a 3-years-old boy and had fever for more than 8 days. Splenomegaly and hemophagocytosis in bone marrow were observed in examination. The results of the blood analysis suggested the diagnosis of HLH. Genetic test based on high throughput amplicon sequencing was then conducted by targeting all six known HLH-causing genes simultaneously. It took only one single day to accomplish the amplicon sequencing library preparation, sequencing and data analysis. Finally, a novel 1 bp deletion in gene SH2D1A was discovered. The result was also confirmed by Sanger sequencing. The result of the genetic test served as a good basis for further diagnosis of HLH. CONCLUSION: This is the first case that the disease-causing genetic defect of HLH was quickly determined by high throughput amplicon sequencing. This diagnosis was also confirmed by Sanger sequencing and cross-validated by blood analysis and other clinical criteria. This case suggests that genetic test based on amplicon sequencing is a powerful tool for diagnosis of HLH and other diseases caused by genetic defect.


Asunto(s)
Linfohistiocitosis Hemofagocítica/genética , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria/genética , Secuencia de Bases , Médula Ósea/patología , Preescolar , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Exones , Eliminación de Gen , Pruebas Genéticas , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico , Masculino , Análisis de Secuencia de ADN
5.
Int J Cardiol ; 410: 132236, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848771

RESUMEN

Cardiovascular diseases (CVD) are currently the most important disease threatening human health, which may be due to the high incidence of risk factors including hyperlipidemia. With the deepening of research on lipoprotein, lipoprotein (a) [Lp(a)] has been shown to be an independent risk factor for atherosclerotic cardiovascular diseases and calcified aortic valve stenosis and is now an unaddressed "residual risk" in current CVD management. Accurate measurement of Lp(a) concentration is the basis for diagnosis and treatment of high Lp(a). This review summarized the Lp(a) structure, discussed the current problems in clinical measurement of plasma Lp(a) concentration and the effects of existing lipid-lowering therapies on Lp(a).


Asunto(s)
Ensayos Clínicos como Asunto , Lipoproteína(a) , Humanos , Lipoproteína(a)/sangre , Ensayos Clínicos como Asunto/métodos , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Biomarcadores/sangre , Hipolipemiantes/uso terapéutico , Factores de Riesgo
6.
J Clin Invest ; 134(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950288

RESUMEN

Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.


Asunto(s)
Cardiomiopatía Dilatada , Mutación del Sistema de Lectura , Ratones Noqueados , Miocitos Cardíacos , Organoides , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/metabolismo , Modelos Animales de Enfermedad , Contracción Miocárdica/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Organoides/metabolismo , Organoides/patología
7.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1644-1654, 2023 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-37154329

RESUMEN

To explore the effect of Mlk3 (mixed lineage kinase 3) deficiency on blood pressure, Mlk3 gene knockout (Mlk3KO) mice were generated. Activities of sgRNAs targeted Mlk3 gene were evaluated by T7 endonuclease I (T7E1) assay. CRISPR/Cas9 mRNA and sgRNA were obtained by in vitro transcription, microinjected into zygote, followed by transferring into a foster mother. Genotyping and DNA sequencing confirmed the deletion of Mlk3 gene. Real- time PCR (RT-PCR), Western blotting or immunofluorescence analysis showed that Mlk3KO mice had an undetectable expression of Mlk3 mRNA or Mlk3 protein. Mlk3KO mice exhibited an elevated systolic blood pressure compared with wild-type mice as measured by tail-cuff system. Immunohistochemistry and Western blotting analysis showed that the phosphorylation of MLC (myosin light chain) was significantly increased in aorta isolated from Mlk3KO mice. Together, Mlk3KO mice was successfully generated by CRISPR/Cas9 system. MLK3 functions in maintaining blood pressure homeostasis by regulating MLC phosphorylation. This study provides an animal model for exploring the mechanism by which Mlk3 protects against the development of hypertension and hypertensive cardiovascular remodeling.


Asunto(s)
Sistemas CRISPR-Cas , Cigoto , Animales , Ratones , Ratones Noqueados , Presión Sanguínea , Técnicas de Inactivación de Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA