RESUMEN
Thorium oxide has many important applications in industry. In this article, theoretical calculations have been carried out to explore the hydrolysis reactions of the ThOn (n=1-3) clusters. The reaction mechanisms of the O-deficient ThO and the O-rich ThO3 are compared with the stoichiometric ThO2 . The theoretical results show good agreement with the prior experiments. It is shown that the hydrolysis mainly occurred on the singlet potential surface. The overall reactions consist of two hydrolysis steps which are all favourable in energy. The effects of oxygen content on the hydrolysis are elucidated. Interestingly, among them, the peroxo group O2 2- in ThO3 is converted to the HOO- ligand, behaving like the terminal O2- in the hydrolysis which is transformed into the HO- groups. In addition, natural bond orbital (NBO) analyses were employed to further understand the bonding of the pertinent species and to interpret the differences in hydrolysis.
RESUMEN
Density functional theory (DFT) calculations are carried out to investigate the structural and electronic properties of a series of hexanuclear vanadium oxide clusters V6On(-/0) (n=12-15). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES) for V6On(-) (n=12-15) clusters. Extensive DFT calculations are performed in search of the lowest-energy structures for both the anions and neutrals. All of these clusters appear to prefer the polyhedral cage structures, in contrast to the planar star-like structures observed in prior model surface studies for the V6O12 cluster. Molecular orbitals are performed to analyze the chemical bonding in the hexanuclear vanadium oxide clusters and provide insights into the sequential oxidation of V6On(-) (n=12-15) clusters. The V6On(-) (n=12-15) clusters possess well-defined V(5+) and V(3+) sites, and may serve as molecular models for surface defects. Electron spin density analyses show that the unpaired electrons in V6On(-) (n=12-14) clusters are primarily localized on the V(3+) sites rather than on the V(5+) sites. The difference gas phase versus model surface structures of V6O12 hints the critical roles of cluster-substrate interactions in stabilizing the planar V6O12 cluster on model surfaces.