Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Technol ; : 1-14, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034618

RESUMEN

An ecological revetment is a new type that combines natural vegetation with civil engineering technology to establish functions, such as flood control, drainage, ecology, and landscape. Various types of ecological and other bank protection lead to different bank protection effects. Urban river ecological bank protection can effectively prevent bank collapse and promote mutual infiltration between river water and soil and is important for maintaining the balance of the river ecosystem and enhancing the ecological service function of river bank protection. To scientifically and accurately evaluate the ecological protection of riverbanks, this study screened 16 evaluation indicators based on four aspects: structural stability, ecological functionality, landscape suitability, and socio-economic status. A comprehensive evaluation index system for urban river ecological protection was constructed and an urban river ecological protection evaluation model based on the AHP - TOPSIS method was established. The model was used to evaluate the ecological protection of the rivers in the study area. The results revealed that the evaluation value, 0.830, of the self-embedded retaining wall exhibited the best performance among the current slope protection types. In addition, structural stability is a crucial factor in river ecological revetments, and the evaluation results were consistent with the revetment type selected in actual engineering. Therefore, the evaluation system constructed in this study is reasonable and reliable and has strong generalizability. This study provides theoretical guidance for selecting ecological protection banks for future river management projects and has specific references important for academic research and the development of environmental protection banks.

2.
Sci Rep ; 14(1): 8665, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622220

RESUMEN

The pumped storage power station (PSPS) is an important measure to achieve the strategic goal of "dual carbon". As one of the preferred types for the upper reservoir dams of PSPSs, the concrete-faced rockfill dam (CFRD) often has a dam foundation on a steep transverse slop and is prone to produce slip deformation along the slope, resulting in poor anti-sliding stability of the dam slope. It is dangerous for the operation safety of PSPSs. Therefore, the slip deformation of CFRDs on dam foundations with large dip angles is investigated. The mechanism for the initiation of slip deformation is revealed. The design measures of physical mechanic and geometric structure are proposed to reduce slip deformation. The results show that the larger sliding forces and smaller anti-sliding forces are the fundamental reasons that CFRDs on dam foundations with large dip angles are prone to produce slip deformation. The larger the dip angle of the dam foundation, the larger the slip deformation of the dam body and face slab, and the smaller the safety factor of the dam slope. When the dip angle of the dam foundation is greater than 15°, the safety factor of the dam slope is less than the minimum value of 1.5 required by codes. The addition of pressure slopes can effectively reduce the slip deformation of the dam body or face slab and significantly improve the anti-sliding stability of the dam slope. When the height or width of the pressure slope platform is greater and the cohesion or internal friction angle of the pressure slope is larger, the slip deformations of the dam body and face slab are smaller, and the safety factor of the dam slope is greater. It is recommended that the height and width of the pressure slope platform be 1/2 times the maximum height of the main dam, and the density (cohesion and internal friction angle) of the pressure slope be equivalent to that of the main dam's rockfill material. The research results can provide theoretical and technical support for the design and construction of CFRDs for the upper reservoir of PSPSs.

3.
Materials (Basel) ; 12(24)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817580

RESUMEN

The applicability of mesoscopic models plays an important role in studying the mesoscopic mechanical properties of concrete. In this study, the computerized tomography (CT) test of concrete under uniaxial compression conditions is conducted using a portable dynamic loading equipment developed by Xi'an University of Technology and a medical Marconi M8000 spiral CT scanner. On the basis of damage partition theory, a probabilistic statistical method for determining threshold values is proposed, and a CT test images is obtained and divided into aggregate, hardened cement and hole-crack areas. A 'structural random numerical concrete model' is also established on the basis of the coordinates of each pixel unit in CT images. Uniaxial static compression and tensile numerical simulation tests are conducted. Results show that the structural random numerical concrete model can not only reflect the microscopic composition of concrete but also the interfacial transition zone (ITZ) between aggregate and mortar. The ITZ thickness is approximately 0.04 mm, which is close to the real concrete sample ITZ thickness (approximately 10-50 µm). In the two tests, the specimen damage starts from the initial defects, and the damage crack expands through the weaker ITZ around the aggregate. No matter under the action of static tension or compression load, the damage cracks of the sample almost never pass through the aggregate. Most of the many cracks in uniaxial compression are shear cracks. However, many cracks form at the beginning of uniaxial tension, and only one main crack, which is roughly perpendicular to the loading direction, exists in the end.

4.
Materials (Basel) ; 11(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042361

RESUMEN

This paper analyzes the relationship between the rates of change of elastic strain energy, the strength during the concrete failure process, and proposes that the increased dynamic strength of concrete was caused by the hysteresis effect of energy release-according to the basic principle of energy conversion. Dynamic Brazilian disc tests were carried out on concrete specimens, with diameter of 100 mm, by using the split Hopkinson pressure bar. Test results were obtained through using a gas gun, with an impact pressure of 0.15 MPa, 0.20 MPa and 0.25 MPa, respectively. The dynamic failure process of concrete is then reproduced by numerical calculation methods. Finally, the energy characteristics during the concrete failure process at different strain rates are studied, and the enhancement mechanism of the dynamic strength of concrete is verified. The results showed that the dynamic tensile strength of concrete increased by 9.79% when the strain rate increased by 61% from 60.25 s-1; and when the strain rate increased by 92.8% from 60.25 s-1, the dynamic tensile strength of the concrete rose by 46.28%. The rates of change of both input energy and dissipated energy meet at the peak stress of the material. The increases in rates of change for the two kinds of energy were not synchronized, so excess input energy could be stored as concrete strength increased. As a result, the extra energy stored after peak stress led to a higher degree of concrete fragmentation and greater kinetic energy of the fragment. These results offer research directions for improving the dynamic strength of concrete.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA