Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38913036

RESUMEN

A novel chemoheterotrophic iron-reducing micro-organism, designated as strain LSZ-M11000T, was isolated from sediment of the Marianas Trench. Phylogenetic analysis based on the 16S rRNA gene revealed that strain LSZ-M11000T belonged to genus Tepidibacillus, with 97 % identity to that of Tepidibacillus fermentans STGHT, a mesophilic bacterium isolated from the Severo-Stavropolskoye underground gas storage facility in Russia. The polar lipid profile of strain LSZ-M11000T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, as well as other unidentified phospholipids and lipids. The major fatty acids were C16 : 0 (28.4 %), C18 : 0 (15.8 %), iso-C15 : 0 (12.9 %), and anteiso-C15 : 0 (12.0 %). Strain LSZ-M11000T had no menaquinone. Genome sequencing revealed that the genome size of strain LSZ-M11000T was 2.97 Mb and the DNA G+C content was 37.9 mol%. The average nucleotide identity values between strain LSZ-M11000T and its close phylogenetic relatives, Tepidibacillus fermentans STGHT and Tepidibacillus decaturensis Z9T, were 76.4 and 72.6 %, respectively. The corresponding DNA-DNA hybridization estimates were 20.9 and 23.4 %, respectively. Cells of strain LSZ-M11000T were rod-shaped (1.0-1.5×0.3-0.5 µm). Using pyruvate as an electron donor, it was capable of reducing KMnO4, MnO2, As(V), NaNO3, NaNO2, Na2SO4, Na2S2O3, and K2Cr2O7. Based on phenotypic, genotypic, and phylogenetic evidence, strain LSZ-M11000T is proposed to be a novel strain of the genus Tepidibacillus, for which the name Tepdibacillus marianensis is proposed. The type strain is LSZ-M11000T (=CCAM 1008T=JCM 39431T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Hierro , Fosfolípidos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , ADN Bacteriano/genética , Federación de Rusia , Hierro/metabolismo , Procesos Heterotróficos , Hibridación de Ácido Nucleico , Bacillaceae/clasificación , Bacillaceae/genética , Bacillaceae/aislamiento & purificación , Secuenciación Completa del Genoma , Oxidación-Reducción
2.
Curr Microbiol ; 81(9): 282, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060557

RESUMEN

The deep-sea harbors abundant prokaryotic biomass is a major site of organic carbon remineralization and long-term carbon burial in the ocean. Deep-sea trenches are the deepest part of the ocean, and their special geological and morphological features promoting the accumulation of organic matter and active organic carbon turnover. Despite the expanding reports about the organic matter inputs, limited information is known regarding microbial processes in deep-sea trenches. In this study, we investigated the species composition and metabolic potential in surface sediment of the New Britain Trench (NBT), using a metagenomic approach. The predominant microbial taxa in NBT sediment include Proteobacteria, Acidobacteria, Planctomycetes, Actinobacteria and Chloroflexota. The microbial communities showed highly diverse metabolic potentials. Particularly, genes encoding enzymes for degradation of aromatic compounds, as well as those encoding haloalkane dehalogenase and haloacetate dehalogenase were annotated in the NBT surface sediment, which indicate the potential of microorganisms to degrade different types of refractory organic matter. The functional genes encoding enzymes for dissimilatory nitrate reduction, denitrification, and nitrification were also represented in the NBT metagenome. Overall, the microbial communities show high diversity of heterotrophic lineages and metabolic features, supporting their potential contributions in organic carbon metabolism. Meanwhile, Nitrosopumilus, a dominant genus in the surface sediment of the NBT, is a typical ammonia-oxidizing archaea (AOA), with autotrophic CO2 fixation pathways including the 3-hydroxypropionate/4-hydroxybutylate (3HP/4HB) cycle, the reductive TCA (rTCA) cycle. The results demonstrate that autotrophic metabolic processes also play an important role in the surface sediment, by providing newly synthesized organic matter.


Asunto(s)
Bacterias , Sedimentos Geológicos , Sedimentos Geológicos/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Microbiota , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Archaea/aislamiento & purificación , Filogenia , Agua de Mar/microbiología , Metagenoma , Metagenómica , ARN Ribosómico 16S/genética , Carbono/metabolismo , Biodiversidad
3.
Mar Drugs ; 22(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921587

RESUMEN

Deep-sea environments, as relatively unexplored extremes within the Earth's biosphere, exhibit notable distinctions from terrestrial habitats. To thrive in these extreme conditions, deep-sea actinomycetes have evolved unique biochemical metabolisms and physiological capabilities to ensure their survival in this niche. In this study, five actinomycetes strains were isolated and identified from the Mariana Trench via the culture-dependent method and 16S rRNA sequencing approach. The antimicrobial activity of Microbacterium sp. B1075 was found to be the most potent, and therefore, it was selected as the target strain. Molecular networking analysis via the Global Natural Products Social Molecular Networking (GNPS) platform identified 25 flavonoid compounds as flavonoid secondary metabolites. Among these, genistein was purified and identified as a bioactive compound with significant antibacterial activity. The complete synthesis pathway for genistein was proposed within strain B1075 based on whole-genome sequencing data, with the key gene being CHS (encoding chalcone synthase). The expression of the gene CHS was significantly regulated by high hydrostatic pressure, with a consequent impact on the production of flavonoid compounds in strain B1075, revealing the relationship between actinomycetes' synthesis of flavonoid-like secondary metabolites and their adaptation to high-pressure environments at the molecular level. These results not only expand our understanding of deep-sea microorganisms but also hold promise for providing valuable insights into the development of novel pharmaceuticals in the field of biopharmaceuticals.


Asunto(s)
Antibacterianos , Genisteína , Genisteína/farmacología , Genisteína/metabolismo , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Microbacterium , ARN Ribosómico 16S/genética , Actinobacteria/metabolismo , Actinobacteria/genética , Metabolismo Secundario , Filogenia , Aciltransferasas
4.
Mar Environ Res ; 199: 106626, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950495

RESUMEN

Understanding the distribution of halogenated organic compounds (HOCs) in marine sediments is essential for understanding the marine carbon and halogen cycling, and also important for assessing the ecosystem health. In this study, a method based on combustion-ion chromatography was developed for determination of the composition and abundance of HOCs in marine sediments. The method showed high accuracy, precision and reproducibility in determining the content of adsorbable organic halogens (AOX), including fluorine, chlorine and bromine (AOF, AOCl, AOBr) and the corresponding insoluble organic halogens (IOF, IOCl, IOBr, IOX), as well as total organic halogen contents (TOX). Application of the method in coastal and deep-sea sediments revealed high ratios of organic halogens in the organic carbon pool of marine sediments, suggesting that organic halogen compounds represent an important yet previously overlooked stock of carbon and energy in marine sediments. Both the TOX and the proportion of organohalogens in organic carbon (X:C ratio) showed an increasing trend from the coast to the deep-sea sediments, indicating an increased significance of HOCs in deep-sea environments. The developed method and the findings of this study lay the foundation for further studies on biogeochemical cycling of HOCs in the ocean.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes Químicos del Agua , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Halógenos/análisis , Halógenos/química , Hidrocarburos Halogenados/análisis , Cromatografía/métodos
5.
mSystems ; 9(1): e0108523, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38117068

RESUMEN

High hydrostatic pressure (HHP) influences the life processes of organisms living at depth in the oceans. While filamentous fungi are one of the essential members of deep-sea microorganisms, few works have explored their piezotolerance to HHP. Here, we obtained three homogeneous Aspergillus sydowii from terrestrial, shallow, and hadal areas, respectively, to compare their pressure resistance. A set of all-around evaluation methods including determination of growth rate, metabolic activity, and microscopic staining observation was established and indicated that A. sydowii DM1 from the hadal area displayed significant piezotolerance. Global analysis of transcriptome data under elevated HHP revealed that A. sydowii DM1 proactively modulated cell membrane permeability, hyphae morphology, and septal quantities for seeking a better livelihood under mild pressure. Besides, differentially expressed genes were mainly enriched in the biosynthesis of amino acids, carbohydrate metabolism, cell process, etc., implying how the filamentous fungi respond to elevated pressure at the molecular level. We speculated that A. sydowii DM1 could acclimatize itself to HHP by adopting several strategies, including environmental response pathway HOG-MAPK, stress proteins, and cellular metabolisms.IMPORTANCEFungi play an ecological and biological function in marine environments, while the physiology of filamentous fungi under high hydrostatic pressure (HHP) is an unknown territory due to current technologies. As filamentous fungi are found in various niches, Aspergillus sp. from deep-sea inspire us to the physiological trait of eukaryotes under HHP, which can be considered as a prospective research model. Here, the evaluation methods we constructed would be universal for most filamentous fungi to assess their pressure resistance, and we found that Aspergillus sydowii DM1 from the hadal area owned better piezotolerance and the active metabolisms under HHP indicated the existence of undiscovered metabolic strategies for hadal fungi. Since pressure-related research of marine fungi has been unexpectedly neglected, our study provided an enlightening strategy for them under HHP; we believed that understanding their adaptation and ecological function in original niches will be accelerated in the perceivable future.


Asunto(s)
Aspergillus , Hongos , Presión Hidrostática , Estudios Prospectivos , Océanos y Mares , Hongos/genética
6.
Microorganisms ; 12(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39065077

RESUMEN

Lignocellulosic materials, made up of cellulose, hemicellulose, and lignin, constitute some of the most prevalent types of biopolymers in marine ecosystems. The degree to which marine microorganisms participate in the breakdown of lignin and their impact on the cycling of carbon in the oceans is not well understood. Strain LCG002, a novel Marivivens species isolated from Lu Chao Harbor's intertidal seawater, is distinguished by its ability to metabolize lignin and various aromatic compounds, including benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate and phenylacetate. It also demonstrates a broad range of carbon source utilization, including carbohydrates, amino acids and carboxylates. Furthermore, it can oxidize inorganic gases, such as hydrogen and carbon monoxide, providing alternative energy sources in diverse marine environments. Its diversity of nitrogen metabolism is supported by nitrate/nitrite, urea, ammonium, putrescine transporters, as well as assimilatory nitrate reductase. For sulfur assimilation, it employs various pathways to utilize organic and inorganic substrates, including the SOX system and DSMP utilization. Overall, LCG002's metabolic versatility and genetic profile contribute to its ecological significance in marine environments, particularly in the degradation of lignocellulosic material and aromatic monomers.

7.
Microorganisms ; 12(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257972

RESUMEN

Lignocellulosic materials are composed of cellulose, hemicellulose and lignin and are one of the most abundant biopolymers in marine environments. The extent of the involvement of marine microorganisms in lignin degradation and their contribution to the oceanic carbon cycle remains elusive. In this study, a novel lignin-degrading bacterial strain, LCG003, was isolated from intertidal seawater in Lu Chao Harbor, East China Sea. Phylogenetically, strain LCG003 was affiliated with the genus Aliiglaciecola within the family Alteromonadaceae. Metabolically, strain LCG003 contains various extracellular (signal-fused) glycoside hydrolase genes and carbohydrate transporter genes and can grow with various carbohydrates as the sole carbon source, including glucose, fructose, sucrose, rhamnose, maltose, stachyose and cellulose. Moreover, strain LCG003 contains many genes of amino acid and oligopeptide transporters and extracellular peptidases and can grow with peptone as the sole carbon and nitrogen source, indicating a proteolytic lifestyle. Notably, strain LCG003 contains a gene of dyp-type peroxidase and strain-specific genes involved in the degradation of 4-hydroxy-benzoate and vanillate. We further confirmed that it can decolorize aniline blue and grow with lignin as the sole carbon source. Our results indicate that the Aliiglaciecola species can depolymerize and mineralize lignocellulosic materials and potentially play an important role in the marine carbon cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA