Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chemphyschem ; 23(9): e202100888, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35174606

RESUMEN

In this work, a novel organomagnesium complex with outstanding aggregation induced emission (AIE) properties is synthesized using dibenzoylmethane (DBM) as the ligand. The structure of the complex is confirmed to be one magnesium ion coordinated to the dione groups of two DBM molecules, and the magnesium ion adopts a distorted octahedrally geometry. The obvious emission is found for Mg(DBM)2 powder and not in the solution, making this the first reported organomagnesium complex with AIE property. The properties of the complex were investigated by using UV-vis absorption and fluorescence emission spectroscopy, cyclic voltammetry, and density functional theory calculations. Moreover, the Mg(DBM)2 solution dispersed in filter paper was is colorless, which may be made into a convenient anti-counterfeiting and encryption tool. Mg(DBM)2 /alginate fibers were prepared by wet-spinning process and further processed into paper, which can be used in the fields of sensors, anti-counterfeiting, and encryption. Sweat contains a wealth of chemical information that could potentially indicate the body's deeper biomolecular state. The prepared fluorescent fibers were used to detect sweat due to its non-toxic, low-cost efficient and fast response to analytes.


Asunto(s)
Colorantes , Magnesio , Alginatos , Polvos , Espectrometría de Fluorescencia
2.
Langmuir ; 38(19): 6004-6012, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35507009

RESUMEN

Reactive dyes are widely used in textile industry, but their excessive use has caused several water pollution problems. In order to reasonably treat printing and dyeing wastewater, the highly efficient adsorbent for reactive dyes employed in this study is a new type metal-organic framework (MOF) material. Ni/Co MOF (NCM) was synthesized using the solvothermal method; then, the materials were analyzed by a series of characterization methods. This study mainly investigated the adsorption properties of NCM toward reactive dyes, and the adsorption capacities of NCM toward reactive red 218 were up to 200 mg·g-1. The results were found to conform to the Langmuir isotherm model, and the pseudo-second-order kinetic model by performing kinetic and isotherm studies on the adsorption process of reactive red 218 on NCM. The results of the intraparticle diffusion model suggest that the binding of reactive red 218 to NCM was mainly divided into three steps: adsorption, diffusion, and saturation. Moreover, it was concluded by thermodynamic fitting of the adsorption process that the adsorption of reactive red 218 by NCM proceeded spontaneously and was accompanied by an endothermic reaction, in which the adsorption of both occurred mainly by electrostatic attraction. The NCM has good reusability and still has good adsorption performance after being reused 5 times. Therefore, NCM is a very promising and excellent adsorbent for the treatment of dye wastewater because of its high efficiency and reusability.

3.
Langmuir ; 38(33): 10081-10088, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35960200

RESUMEN

Improving the development of high-value multifunctional wool fabrics was essential to satisfy diverse needs. Considering the various characteristics of chitosan macromolecules, herein, a padding-cross-linking process was adopted and then multifunctional wool fabrics with outstanding printing effects, shrink resistance, and antibacterial properties were fabricated. The test results showed that chitosan macromolecules loaded successfully on the wool fiber surface by Schiff base reaction. Wool fabrics changed from hydrophobic to hydrophilic due to the existence of chitosan macromolecules. The color strength (K/S value) of the reactive dye inkjet-printed wool fabric was greatly increased from 20.48 to 26.6. The area shrinkage of final samples was 2.53%, which was exceedingly lower than that of the original wool (10.96%). Moreover, the chitosan macromolecules with reactive amino groups endowed wool fabrics with certain antibacterial properties against E. coli and S. aureus. Generally, this study provided guidance for manufacturing multifunctional digital inkjet-printed wool products in mass production.


Asunto(s)
Quitosano , Fibra de Lana , Antibacterianos/química , Antibacterianos/farmacología , Quitosano/química , Escherichia coli , Bases de Schiff , Staphylococcus aureus
4.
Langmuir ; 38(39): 12095-12102, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36150189

RESUMEN

In view of the environmental pollution caused by the widespread use of reactive dyes in the printing and dyeing industry, the modified cotton fabric was loaded with the extremely stable metal-organic frame (MOF) material UiO-66 for removing reactive dyes from colored wastewater. UiO-66/cotton fabric was prepared by in situ synthesis, and its surface morphology and structure were analyzed by XRD, SEM, BET, and XPS. The adsorption performance of UiO-66/cotton fabric on reactive dyes was investigated by adsorbent dosage, adsorption time and temperature, dye concentration, pH, and so on. The results indicated that the adsorption equilibrium time of UiO-66/cotton fabric on reactive orange 16 was 120 min, and the removal rate was about 98%. The adsorption process belongs to simple molecular layer chemisorption and can be regarded as a spontaneous heat absorption reaction, which was consistent with the proposed secondary kinetic model and Langmuir isothermal adsorption model. In addition, the reactive dyes with a higher molecular weight of each sulfonic acid group are more hydrophobic, and the dyes are more likely to aggregate and deposit on the adsorbent surface by electrostatic attraction, hydrogen bonding, and π-π accumulation. Therefore, this work provides a potential UiO-66/cotton fabric application for the effective adsorption of reactive dyes in textile wastewater.

5.
J Environ Manage ; 321: 115972, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35977435

RESUMEN

Zeolitic imidazolate framework-67 (ZIF-67) formed by Co2+ and 2-methylimidazole (MIM) is widely used for adsorption and separation of pollutants. However, there are some disadvantages for ZIF-67 powder, such as strong electrostatic interaction and difficulty in recovery from the liquid phase. The available way to solve the above problems is choosing a suitable substrate to load ZIF-67. The amino and hydroxyl of wool fabrics effectively capture and fix ZIF-67, making it easy to separate ZIF-67 by taking out the composite materials from aqueous solution. In this study, ZIF-67/Wool fabric (ZW) was successfully prepared. The results show that ZIF-67 has better adsorption performance for reactive dyes with more sulfonic groups, higher molecular weight and lower steric resistance. The equilibrium adsorption capacity of ZW for reactive red 195 was 4.15 mg g-1. The adsorption accorded with pseudo-second-order kinetic model and Langmuir isotherm. This study improved the application of ZIF-67, which provided a treatment method for dyeing wastewater and made it possible to recycle waste wool.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Zeolitas , Adsorción , Animales , Colorantes , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Fibra de Lana , Zeolitas/química
6.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807420

RESUMEN

With the ever-growing concern about environmental conservation, green production and water-based nanofibers have attracted more and more interest from both academic and industrial fields; nevertheless, the stabilization process of water-based nanofibers is primarily relying on the application of organic solvent-based crosslinking agents. In this work, we develop a green approach to fabricate water-resistant polyvinyl alcohol (PVA) nanofibers by using a water-based epoxy compound, N1, N6-bis(oxiran-2-ylmethyl) hexane-1,6-diamine (EH), as the crosslinker. This EH/sodium carbonate/sodium bicarbonate (CBS) solution system can break down large aggregates of PVA molecules into small ones and promote the uniform distribution of EH in the solution, resulting in the improved stability of crosslinked PVA nanofibers. We firstly report that the uniform dispersion of crosslinking agents in the electrospinning solution plays a vital role in improving the stability of spinning solutions and the water resistance of crosslinked PVA nanofibers by comparing crosslinking performances between water-based epoxy and conventional water-based blocked isocyanate (BI). This work could open up a novel strategy and green approach for the stabilization of water-based nanofibers.


Asunto(s)
Nanofibras , Alcohol Polivinílico , Resinas Epoxi , Agua
7.
Langmuir ; 37(4): 1493-1500, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33464090

RESUMEN

Digital inkjet printing technology plays an increasingly important role in textile printing. The printing printability of reactive dye inks is the key to improving the quality of printed fabrics. In this study, an eco-friendly and simple method to improve the inkjet printability of reactive dye solutions was proposed. The influence of diethylene glycol on the surface tension, rheology, and dye molecule aggregation properties for three reactive dye solutions was investigated. The jetting performance of dye solutions was explored by observing droplet formation. Moreover, the color performance of printed cotton fabrics, including reactive dye solution penetration, colorimetric values, and color strength, was evaluated. Addition of diethylene glycol could change the aggregation of dye molecules by hydrophobic forces and hydrogen bonds. Diethylene glycol could inhibit formation of satellite droplets by changing the viscosity and surface tension of solutions, which made the pattern printed on cotton fabrics show regular edge sharpness. Furthermore, the dye solutions containing 10% DEG not only satisfied various properties of reactive dye inks but also had the highest color strength and the deepest and brightest colors.

8.
Langmuir ; 37(2): 683-692, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33405938

RESUMEN

Bicomponent or multicomponent fiber fabrics are important materials for manufacturing high-performance textiles. However, the printing and dyeing of these fabrics are very difficult because the dyeability of different fibers varies greatly. The present study investigated the inkjet printing performance of interwoven fabrics of cotton and polyamide 6. The surfactant alpha olefin sulfonate (AOS) was incorporated into the sodium alginate (SA) solution to pretreat the fabrics to improve the color effects of printed fabrics. The results indicate that fabric pretreatment using 5% alpha olefin sulfonate and 2% sodium alginate significantly enhanced the image colors through increasing the hydrophilicity of the film formed on polyamide fibers and changing the surface morphology of both the fibers. The molecules of AOS interacted with the macromolecules of SA to form the composite films, where the AOS concentration gradient increased outward and SA concentration gradient increased inward. The synergistic pretreatment of alpha olefin sulfonate and sodium alginate endowed the fabrics with high inkjet printing performance, satisfactory color fastnesses, and durability.

9.
Langmuir ; 36(32): 9481-9488, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32787136

RESUMEN

In textile inkjet printing, understanding the effect of viscosity and surface tension of a reactive dye ink on droplet formation is of great significance. As an organic ecofriendly solvent, polyethylene glycol with a molecular weight of -400 g/mol (PEG400) was used to prepare reactive dye inks with or without Surfynol 465 (S465) to explain separately how viscosity and surface tension affect the droplet formation of a reactive dye ink. The intermolecular interactions in the ink and physical properties of the ink were investigated by measuring the visible absorption spectra, hydrodynamic radius, viscosity, and surface tension. Droplet formation under a single variable influence of viscosity or surface tension was observed by taking photographs using a high-speed camera. Results show that a high ink viscosity condition generates no satellite droplet formation and a slower droplet velocity, and a higher surface tension tends to cause ligament rupture from the nozzle tip and the droplet. Moreover, a twill cotton fabric printed using the PEG-S465-dye ink at a 30% PEG400 concentration showed higher ink penetration, dye fixation rate, ideal color strength, and rubbing fastness.

10.
Molecules ; 25(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481525

RESUMEN

Digital inkjet printing has been widely used in textile industry. The quality of dye solutions and ink-jet droplets limits the ink-jet printing performance, which is very important for obtaining high-quality ink-jet printing images on fabrics. In this paper, we introduced diethylene glycol (DEG) into the dye solutions of Reactive Blue 49 and Reactive Orange 13, respectively, and investigated the interaction between dye chromophores and DEG molecules. Results indicated that the dye chromophores were featured in the aggregation. Adding DEG into the dye solution could effectively disaggregate clusters of reactive dyes, and eliminate satellite ink droplets, thus improving the resolution of the ink-jet printing image on fabrics. Under the same DEG concentration, the disaggregation effect was more obvious in Orange 13 than in Reactive Blue 49. Higher DEG concentration was required in Reactive Orange 13 solution for creating complete and stable ink drops. The surface tension and viscosity of the dye solutions were measured, and printing performance on cotton fabrics was evaluated. The interaction mechanism between dye chromophores and DEG molecules was also investigated. Results from this work are useful for high-quality ink-jet printing images on fabrics.


Asunto(s)
Glicoles de Etileno/química , Colorantes/química , Tensión Superficial , Viscosidad
11.
Molecules ; 25(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235624

RESUMEN

The aggregation structure of dye molecules has a great influence on the properties of dye solutions, especially in high concentration. Here, the dye molecular aggregation structures were investigated systemically in aqueous solutions with high concentration using three reactive dyes (O-13, R-24:1 and R-218). O-13 showed stronger aggregation than R-24:1 and R-218. This is because of the small non-conjugate side chain and its ß-linked position on the naphthalene of O-13. Compared with R-218, R-24:1 showed relatively weaker aggregation due to the good solution of R-24:1. The change of different aggregate distributions in the solutions were also investigated by splitting the absorption curves. Moreover, it is found that the surface tension of solutions can be modified by the combined effect of both aggregation and the position of the hydrophilic group, which, however, also have an effect on viscosity. This exploration will provide guidance for the study of high concentration solutions.


Asunto(s)
Colorantes/química , Modelos Químicos , Soluciones , Tensión Superficial , Viscosidad
12.
J Environ Manage ; 207: 423-431, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29190485

RESUMEN

In this research, a stable graphene oxide (GO) suspension was prepared by chemical reduction method from graphite powder. By TEM, the irregular GO sheets with single-atom-layered structure could be observed. The zeta potentials measurement indicated the surface charges of GO were strongly related to pH. BET analysis showed the GO had a specific surface area of 30.7 m2/g and pore volume of 0.10 cm3/g. When the GO was used to remove the residual cellulase in bio-polishing effluent, it was found the removal capacity reached its maximum value at the pH 4-5. The kinetics studies showed that the removal process of cellulase followed a pseudo-second-order kinetic model with a rate constant (k2) of 0.276 × 10-3 g/mg min and equilibrium adsorption capacity of 278.55 mg/g, respectively. By plotting the adsorption isotherms, it was found the Langmuir model fitted the experimental data well with a cellulase adsorption capacity of 574.71 mg/g, indicating the adsorption of cellulase by GO in a monolayer manner. When dyeing the cotton fabrics with reactive dyes, it was found that the cotton fabrics could acquire similar color properties in the recycled bio-polishing effluent as in fresh water, meaning the effectiveness of removing cellulase by GO and the feasibility of recycling the bio-polishing effluent.


Asunto(s)
Celulasa , Grafito , Contaminantes Químicos del Agua , Adsorción , Colorantes , Concentración de Iones de Hidrógeno , Cinética , Óxidos
13.
Chem Commun (Camb) ; 60(17): 2353-2356, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323482

RESUMEN

Artificial spinal dura mater was designed by combining solution blow-spun gelatin microfibers and dopamine-capped polyurethane bioadhesive. Notably, the gelatin microfibers had a special pore structure, good water adsorption capability, and excellent burst pressure resistance. The bioadhesive layer contributed to the excellent sealing performance in the wet state. This material provides a promising alternative as an artificial spinal dura mater to prevent cerebrospinal fluid leakage.


Asunto(s)
Pérdida de Líquido Cefalorraquídeo , Gelatina , Humanos , Pérdida de Líquido Cefalorraquídeo/prevención & control , Duramadre , Agua
14.
Int J Biol Macromol ; 264(Pt 1): 130596, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447823

RESUMEN

This study introduces a novel approach to develop a multifunctional coating on cotton fabric, emphasizing the utilization of cotton fiber as a biological macromolecule, by integrating a TiO2@g-C3N4 layered structure to confer superhydrophobic properties and multiple functionalities. The engineered structure not only enhances fabric roughness but also incorporates non-fluoro hydrophobic agents, thereby imparting diverse capabilities such as photocatalysis, oil-water separation, and self-cleaning to the cotton substrate. Fabrication of the TiO2@g-C3N4 layered structure involved ultrasonic dispersion of TiO2 and g-C3N4, subsequently deposited onto cotton fabric. Sequential hydrophobic treatment with polydimethylsiloxane (PDMS) and isophorone diisocyanate (IPDI) achieved superhydrophobicity, exhibiting an exceptional water contact angle (WCA) of 157.9°. Comprehensive characterization via scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric validated the composite's structural and chemical properties. The introduced TiO2@g-C3N4 structure significantly enhanced fabric roughness, while PDMS treatment lowered surface energy and IPDI hydrolysis facilitated cross-linking, ensuring durability. The resultant TiO2@g-C3N4/PDMS cotton exhibited outstanding self-cleaning properties and demonstrated oil adsorption capacity, accommodating both heavy and light oils. Notably, this superhydrophobic cotton efficiently separated water-oil mixtures, achieving 96.8 % efficiency even after 10 cycles. Moreover, under simulated light, it displayed outstanding photocatalytic degradation (93.2 %) of methylene blue while maintaining a WCA of 150° post-degradation, highlighting sustained functionality. This innovation holds promise for sustainable applications, offering robust physical and chemical durability within the realm of biological macromolecules. The amalgamation of TiO2@g-C3N4 layered structure and PDMS treatment on cotton fabric underscores a sustainable approach to address water-oil separation challenges and enable efficient self-cleaning. This research demonstrates a significant step towards sustainable material applications and addresses pertinent real-world challenges in diverse technological domains.


Asunto(s)
Fibra de Algodón , Agua , Agua/química , Espectroscopía Infrarroja por Transformada de Fourier , Interacciones Hidrofóbicas e Hidrofílicas , Aceites
15.
Int J Biol Macromol ; 261(Pt 1): 129668, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278380

RESUMEN

Wound dressings are crucial for wound healing. Ideal wound dressings should possess many functions such as wettability, antibacterial activity and anti-adherent property to promote wound healing. In the present study solution blown spinning (SBS) technology was applied to prepare chitosan/polyethylene oxide (CS/PEO) nanofiber dressings in high efficiency. The obtained nanofiber dressings were treated with anhydrous ethanol to improve the fiber structure and enhance the functionality of the fiber dressings. The results show that the treated nanofibers had higher crystallinities and higher CS contents. The CS/PEO nanofiber dressings fabricated by using no additives and crosslinking had excellent wettability, water stability and antibacterial activity against Escherichia coli and Staphylococcus aureus reached to over 99.99 %. In addition, the CS/PEO nanofiber dressings exhibited high breathability, antioxidant activity and anti-adhesion function. The in vivo animal experiment confirmed that the nanofiber dressings enhanced cell proliferation and significantly accelerated the wound healing within 10 days. The developed CS/PEO nanofiber dressings have great potential in the clinical field of wound healing.


Asunto(s)
Quitosano , Nanofibras , Animales , Nanofibras/química , Quitosano/farmacología , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Cicatrización de Heridas , Vendajes , Escherichia coli , Polietilenglicoles/química
16.
Int J Biol Macromol ; 261(Pt 2): 129804, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296151

RESUMEN

With the diversification of people's demand for textile functions, the preparation of multifunctional fabrics is still a current research hotspot. In this study, the water-soluble epoxy compound N1, N6-bis(oxiran-2-ylmethyl) hexane-1,6-diamine (EH) was introduced into cellulose macromolecule blended fabrics (cotton/modal) by two-phase vaporization technique, resulting in excellent wrinkle, hydrophobicity, and certain UV protection effects. It could be observed by electron microscopy that EH formed a polymer film on the fiber surface. In addition, the results of EDS scans and fiber swelling rate tests showed that EH was uniformly distributed and formed a cross-linked structure in the amorphous zones inside the fibers. Compared with the control fabrics, the wrinkle recovery angle of the EH-treated fabric was increased by 39.7 %. The fabrics could reach a contact angle of 136.9°, providing excellent hydrophobic effect. In addition, the fabrics achieved certain UV protection effects (UPF of 50+). The EH-treated fabrics were less stabilized in strong acid and alkali conditions, but exhibited greater durability in other environments. In summary, the internal and external synergistic effects of EH in forming polymer films on the fibers surface and internal cross-linking structures provided a cleaner, simple, and feasible method for the preparation of multifunctional cellulose macromolecule fibers textiles.


Asunto(s)
Celulosa , Óxido de Etileno , Humanos , Celulosa/química , Textiles , Diaminas
17.
ACS Biomater Sci Eng ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935742

RESUMEN

Bone defects typically result in bone nonunion, delayed or nonhealing, and localized dysfunction, and commonly used clinical treatments (i.e., autologous and allogeneic grafts) have limited results. The multifunctional bone tissue engineering scaffold provides a new treatment for the repair of bone defects. Herein, a three-dimensional porous composite scaffold with stable mechanical support, effective antibacterial and hemostasis properties, and the ability to promote the rapid repair of bone defects was synthesized using methacrylated carboxymethyl chitosan and icariin-loaded poly-l-lactide/gelatin short fibers (M-CMCS-SFs). Icariin-loaded SFs in the M-CMCS scaffold resulted in the sustained release of osteogenic agents, which was beneficial for mechanical reinforcement. Both the porous structure and the use of chitosan facilitate the effective absorption of blood and fluid exudates. Moreover, its superior antibacterial properties could prevent the occurrence of inflammation and infection. When cultured with bone mesenchymal stem cells, the composite scaffold showed a promotion in osteogenic differentiation. Taken together, such a multifunctional composite scaffold showed comprehensive performance in antibacterial, hemostasis, and bone regeneration, thus holding promising potential in the repair of bone defects and related medical treatments.

18.
Nanoscale ; 16(20): 9861-9874, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712977

RESUMEN

A guided bone regeneration (GBR) membrane can act as a barrier to prevent the invasion and interference from foreign soft tissues, promoting infiltration and proliferation of osteoblasts in the bone defect area. Herein, a composite scaffold with dual functions of osteogenesis and antibacterial effects was prepared for GBR. A polycaprolactone (PCL)/nano-hydroxyapatite (n-HA) aerogel produced by electrospinning and freeze-drying techniques was fabricated as the loose layer of the scaffold, while a PCL nanofiber membrane was used as the dense layer. Chitosan (CS) solution served as a middle layer to provide mechanical support and antibacterial effects between the two layers. Morphological results showed that the loose layer had a porous structure with n-HA successfully dispersed in the aerogels, while the dense layer possessed a sufficiently dense structure. In vitro antibacterial experiments illustrated that the CS solution in the middle layer stabilized the scaffold structure and endowed the scaffold with good antibacterial properties. The cytocompatibility results indicated that both fibroblasts and osteoblasts exhibited superior cell activity on the dense and loose layers, respectively. In particular, the dense layer made of nanofibers could work as a barrier layer to inhibit the infiltration of fibroblasts into the loose layer. In vitro osteogenesis analysis suggested that the PCL/n-HA aerogel could enhance the bone induction ability of bone mesenchymal stem cells, which was confirmed by the increased expression of the alkaline phosphatase activity. The loose structure facilitated the infiltration and migration of bone mesenchymal stem cells for better osteogenesis. In summary, such a composite scaffold exhibited excellent osteogenic and antibacterial properties as well as the barrier effect, thus holding promising potential for use as GBR materials.


Asunto(s)
Antibacterianos , Regeneración Ósea , Quitosano , Durapatita , Nanofibras , Osteoblastos , Osteogénesis , Poliésteres , Quitosano/química , Quitosano/farmacología , Durapatita/química , Durapatita/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Regeneración Ósea/efectos de los fármacos , Nanofibras/química , Poliésteres/química , Poliésteres/farmacología , Animales , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Ratones , Andamios del Tejido/química , Geles/química , Staphylococcus aureus/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/citología
19.
Int J Biol Macromol ; 224: 1252-1265, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309235

RESUMEN

In this study, a simple and effective coating method to improve printing quality and material utilization rate was proposed. The flow behavior of pico-liter scale ink droplets on the silk fabric surfaces which treated separately with Sodium alginate (SA), Hydroxyethyl cellulose (HEC) and Hydroxyethyl methyl cellulose (HEMC) was observed and measured. Indeed, based on the direct empirical results, the optimal pretreatment process on the fabrics, aiming to increase the ink utilization rate and further improve the surface printing clarity, has been obtained in the experiments. Studies on rheological property, surface activity, scanning electron microscope (SEM) and contact angle have shown that HEMC can form the densest and smoothest film on silk fabrics, where the most hydrophobic surface arises. X-ray photoelectron spectroscopy (XPS) results indicate that the surface of the fabric is covered with films of different properties formed by the treatment solution, and confirmed that the films formed by HEMC were more hydrophobic. The spreading motion of ink droplets revealed that although the hydrophobicity of HEC and HEMC effectively restrain the flow of ink droplet along the fiber, and the length and width of one-ink droplet deposition are minimum in HEMC treated fabric. Similarly, the findings on color performance suggest that HEMC has absolutely comparative advantage over HEC in improving the color effect of printing, with dye utilization rate of three different colors increasing by 68.7 %-80.0 %.


Asunto(s)
Tinta , Seda , Interacciones Hidrofóbicas e Hidrofílicas , Textiles , Metilcelulosa
20.
ACS Appl Mater Interfaces ; 14(21): 24787-24797, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35603943

RESUMEN

Nature has given us significant inspiration to reproduce bioinspired materials with high strength and toughness. The fabrication of well-defined three-dimensional (3D) hierarchically structured nanocomposite materials from nano- to the macroscale using simple, green, and scalable methods is still a big challenge. Here, we report a successful attempt at the fabrication of multidimensional bioinspired nanocomposites (fiber, films, plates, hollow tubes, chair models, etc.) with high strength and toughness through self-healing and shape-retaining methods using waterborne polyurethane (WPU) and nanocellulose. In our method, the prepared TEMPO oxide cellulose nanofiber (TOCNF)-WPU hybrid films show excellent moisture-induced self-healing and shape-retaining abilities, which can be used to fabricate all sorts of 3D bioinspired nanocomposites with internal aligned and hierarchical architectures just using water as media. The tensile and flexural strength of the self-assembled plate can reach 186.8 and 193.2 MPa, respectively, and it also has a high toughness of 11.6 MJ m-3. Because of this bottom-up self-assembly strategy, every multidimensional structure we processed has high strength and toughness. This achievement would provide a promising future to realize a large-scale and reliable production of various sorts of bioinspired multidimensional materials with high strength and toughness in a sustainable manner.


Asunto(s)
Materiales Biomiméticos , Nanocompuestos , Nanofibras , Materiales Biomiméticos/química , Celulosa/química , Nanocompuestos/química , Nanofibras/química , Poliuretanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA