Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 623(7986): 301-306, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938707

RESUMEN

Electronic flat-band materials host quantum states characterized by a quenched kinetic energy. These flat bands are often conducive to enhanced electron correlation effects and emergent quantum phases of matter1. Long studied in theoretical models2-4, these systems have received renewed interest after their experimental realization in van der Waals heterostructures5,6 and quasi-two-dimensional (2D) crystalline materials7,8. An outstanding experimental question is if such flat bands can be realized in three-dimensional (3D) networks, potentially enabling new materials platforms9,10 and phenomena11-13. Here we investigate the C15 Laves phase metal CaNi2, which contains a nickel pyrochlore lattice predicted at a model network level to host a doubly-degenerate, topological flat band arising from 3D destructive interference of electronic hopping14,15. Using angle-resolved photoemission spectroscopy, we observe a band with vanishing dispersion across the full 3D Brillouin zone that we identify with the pyrochlore flat band as well as two additional flat bands that we show arise from multi-orbital interference of Ni d-electrons. Furthermore, we demonstrate chemical tuning of the flat-band manifold to the Fermi level that coincides with enhanced electronic correlations and the appearance of superconductivity. Extending the notion of intrinsic band flatness from 2D to 3D, this provides a potential pathway to correlated behaviour predicted for higher-dimensional flat-band systems ranging from tunable topological15 to fractionalized phases16.

2.
Proc Natl Acad Sci U S A ; 121(23): e2318411121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805279

RESUMEN

Frustrated rare-earth-based intermetallics provide a promising platform for emergent magnetotransport properties through exchange coupling between conduction electrons and localized rare-earth magnetic moments. Metamagnetism, the abrupt change of magnetization under an external magnetic field, is a signature of first-order magnetic phase transitions; recently, metamagnetic transitions in frustrated rare earth intermetallics have attracted interest for their accompanying nontrivial spin structures (e.g., skyrmions) and associated nonlinear and topological Hall effects (THE). Here, we present metamagnetism-induced Hall anomalies in single-crystalline ErGa2, which recalls features arising from the THE but wherein the strong Ising-type anisotropy of Er moments prohibits noncoplanar spin structures. We show that the observed anomalies are neither due to anomalous Hall effect nor THE; instead, can be accounted for via 4f-5d interactions which produce a band-dependent mobility modulation. This leads to a pronounced multiband Hall response across the magnetization process-a metamagnetic multiband Hall effect that resembles a topological-Hall-like response but without nontrivial origins. The present findings may be of general relevance in itinerant metamagnetic systems regardless of coplanar/noncoplanar nature of spins and are important for the accurate identification of Hall signals due to emergent magnetic fields.

3.
Nature ; 565(7739): 337-342, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30559379

RESUMEN

The electrical Hall effect is the production, upon the application of an electric field, of a transverse voltage under an out-of-plane magnetic field. Studies of the Hall effect have led to important breakthroughs, including the discoveries of Berry curvature and topological Chern invariants1,2. The internal magnetization of magnets means that the electrical Hall effect can occur in the absence of an external magnetic field2; this 'anomalous' Hall effect is important for the study of quantum magnets2-7. The electrical Hall effect has rarely been studied in non-magnetic materials without external magnetic fields, owing to the constraint of time-reversal symmetry. However, only in the linear response regime-when the Hall voltage is linearly proportional to the external electric field-does the Hall effect identically vanish as a result of time-reversal symmetry; the Hall effect in the nonlinear response regime is not subject to such symmetry constraints8-10. Here we report observations of the nonlinear Hall effect10 in electrical transport in bilayers of the non-magnetic quantum material WTe2 under time-reversal-symmetric conditions. We show that an electric current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of a magnetic field. The properties of this nonlinear Hall effect are distinct from those of the anomalous Hall effect in metals: the nonlinear Hall effect results in a quadratic, rather than linear, current-voltage characteristic and, in contrast to the anomalous Hall effect, the nonlinear Hall effect results in a much larger transverse than longitudinal voltage response, leading to a nonlinear Hall angle (the angle between the total voltage response and the applied electric field) of nearly 90 degrees. We further show that the nonlinear Hall effect provides a direct measure of the dipole moment10 of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new type of Hall effect and provide a way of detecting Berry curvature in non-magnetic quantum materials.

4.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767624

RESUMEN

Naturally occurring isolates of baculoviruses, such as the Bombyx mori nucleopolyhedrovirus (BmNPV), usually consist of numerous genetically different haplotypes. Deciphering the different haplotypes of such isolates is hampered by the large size of the dsDNA genome, as well as the short read length of next generation sequencing (NGS) techniques that are widely applied for baculovirus isolate characterization. In this study, we addressed this challenge by combining the accuracy of NGS to determine single nucleotide variants (SNVs) as genetic markers with the long read length of Nanopore sequencing technique. This hybrid approach allowed the comprehensive analysis of genetically homogeneous and heterogeneous isolates of BmNPV. Specifically, this allowed the identification of two putative major haplotypes in the heterogeneous isolate BmNPV-Ja by SNV position linkage. SNV positions, which were determined based on NGS data, were linked by the long Nanopore reads in a Position Weight Matrix. Using a modified Expectation-Maximization algorithm, the Nanopore reads were assigned according to the occurrence of variable SNV positions by machine learning. The cohorts of reads were de novo assembled, which led to the identification of BmNPV haplotypes. The method demonstrated the strength of the combined approach of short- and long-read sequencing techniques to decipher the genetic diversity of baculovirus isolates.


Asunto(s)
Bombyx , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nanoporos , Nucleopoliedrovirus , Polimorfismo de Nucleótido Simple , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/clasificación , Nucleopoliedrovirus/aislamiento & purificación , Animales , Secuenciación de Nanoporos/métodos , Bombyx/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genoma Viral
5.
Nat Mater ; 22(2): 186-193, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36329264

RESUMEN

In the kagome metals AV3Sb5 (A = K, Rb, Cs), three-dimensional charge order is the primary instability that sets the stage for other collective orders to emerge, including unidirectional stripe order, orbital flux order, electronic nematicity and superconductivity. Here, we use high-resolution angle-resolved photoemission spectroscopy to determine the microscopic structure of three-dimensional charge order in AV3Sb5 and its interplay with superconductivity. Our approach is based on identifying an unusual splitting of kagome bands induced by three-dimensional charge order, which provides a sensitive way to refine the spatial charge patterns in neighbouring kagome planes. We found a marked dependence of the three-dimensional charge order structure on composition and doping. The observed difference between CsV3Sb5 and the other compounds potentially underpins the double-dome superconductivity in CsV3(Sb,Sn)5 and the suppression of Tc in KV3Sb5 and RbV3Sb5. Our results provide fresh insights into the rich phase diagram of AV3Sb5.

6.
Nature ; 556(7699): 43-50, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29512651

RESUMEN

The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

7.
Nature ; 556(7699): 80-84, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29512654

RESUMEN

A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the 'twist' angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the 'magic' angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.

8.
Nat Mater ; 19(2): 163-169, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31819211

RESUMEN

A kagome lattice of 3d transition metal ions is a versatile platform for correlated topological phases hosting symmetry-protected electronic excitations and magnetic ground states. However, the paradigmatic states of the idealized two-dimensional kagome lattice-Dirac fermions and flat bands-have not been simultaneously observed. Here, we use angle-resolved photoemission spectroscopy and de Haas-van Alphen quantum oscillations to reveal coexisting surface and bulk Dirac fermions as well as flat bands in the antiferromagnetic kagome metal FeSn, which has spatially decoupled kagome planes. Our band structure calculations and matrix element simulations demonstrate that the bulk Dirac bands arise from in-plane localized Fe-3d orbitals, and evidence that the coexisting Dirac surface state realizes a rare example of fully spin-polarized two-dimensional Dirac fermions due to spin-layer locking in FeSn. The prospect to harness these prototypical excitations in a kagome lattice is a frontier of great promise at the confluence of topology, magnetism and strongly correlated physics.

9.
Phys Rev Lett ; 127(27): 277204, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35061435

RESUMEN

The interplay between electronic interactions and strong spin-orbit coupling is expected to create a plethora of fascinating correlated topological states of quantum matter. Of particular interest are magnetic Weyl semimetals originally proposed in the pyrochlore iridates, which are only expected to reveal their topological nature in thin film form. To date, however, direct experimental demonstrations of these exotic phases remain elusive, due to the lack of usable single crystals and the insufficient quality of available films. Here, we report on the discovery of signatures for the long-sought magnetic Weyl semimetallic phase in (111)-oriented Eu_{2}Ir_{2}O_{7} high-quality epitaxial thin films. We observed an intrinsic anomalous Hall effect with colossal coercivity but vanishing net magnetization, which emerges right below the onset of a peculiar magnetic phase with all-in-all-out (AIAO) antiferromagnetic ordering. The anomalous Hall conductivity obtained experimentally is consistent with the theoretical prediction, likely arising from the nonzero Berry curvature emanated by Weyl node pairs near the Fermi level that act as sources and sinks of Berry flux, activated by broken cubic crystal symmetry at the top and bottom terminations of the thin film.

10.
J Am Chem Soc ; 142(41): 17499-17507, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32942848

RESUMEN

Interlayer coupling plays essential roles in the quantum transport, polaritonic, and electrochemical properties of stacked van der Waals (vdW) materials. In this work, we report the unconventional interlayer coupling in vdW heterostructures (HSs) by utilizing an emerging 2D material, Janus transition metal dichalcogenides (TMDs). In contrast to conventional TMDs, monolayer Janus TMDs have two different chalcogen layers sandwiching the transition metal and thus exhibit broken mirror symmetry and an intrinsic vertical dipole moment. Such a broken symmetry is found to strongly enhance the vdW interlayer coupling by as much as 13.2% when forming MoSSe/MoS2 HS as compared to the pristine MoS2 counterparts. Our noncontact ultralow-frequency Raman probe, linear chain model, and density functional theory calculations confirm the enhancement and reveal the origins as charge redistribution in Janus MoSSe and reduced interlayer distance. Our results uncover the potential of tuning interlayer coupling strength through Janus heterostacking.

11.
Nat Mater ; 18(5): 448-453, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30988451

RESUMEN

Control of the interlayer twist angle in two-dimensional van der Waals (vdW) heterostructures enables one to engineer a quasiperiodic moiré superlattice of tunable length scale1-8. In twisted bilayer graphene, the simple moiré superlattice band description suggests that the electronic bandwidth can be tuned to be comparable to the vdW interlayer interaction at a 'magic angle'9, exhibiting strongly correlated behaviour. However, the vdW interlayer interaction can also cause significant structural reconstruction at the interface by favouring interlayer commensurability, which competes with the intralayer lattice distortion10-16. Here we report atomic-scale reconstruction in twisted bilayer graphene and its effect on the electronic structure. We find a gradual transition from an incommensurate moiré structure to an array of commensurate domains with soliton boundaries as we decrease the twist angle across the characteristic crossover angle, θc ≈ 1°. In the solitonic regime (θ < θc) where the atomic and electronic reconstruction become significant, a simple moiré band description breaks down and the secondary Dirac bands appear. On applying a transverse electric field, we observe electronic transport along the network of one-dimensional topological channels that surround the alternating triangular gapped domains. Atomic and electronic reconstruction at the vdW interface provide a new pathway to engineer the system with continuous tunability.

12.
Nano Lett ; 19(9): 6482-6491, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31430158

RESUMEN

Simultaneous imaging of individual low and high atomic number atoms using annular dark field scanning transmission electron microscopy (ADF-STEM) is often challenging due to substantial differences in their scattering cross sections. This often leads to contrast from only the high atomic number species when imaged using ADF-STEM such as the Mo and 2S sites in monolayer MoS2 crystals, without detection of lighter atoms such as C, O, or N. Here, we show that by capturing an array of convergent beam electron diffraction patterns using a 2D pixelated electron detector (2D-PED) in a 4D STEM geometry enables identification of individual low and high atomic number atoms in 2D materials by multicomponent imaging. We have used ptychographic phase reconstructions, combined with angular dependent ADF-STEM reconstructions, to image light elements at lateral (nanopores) and vertical interfaces (surface dopants) within 2D monolayer MoS2. Differential phase contrast imaging (Div(DPC)) using quadrant segmentation of the 2D pixelated direct electron detector data not only qualitatively matches the ptychographic phase reconstructions in both resolution and contrast but also offers the additional potential for real time display. Using 4D-STEM, we have identified surface adatoms on MoS2 monolayers and have separated atomic columns with similar total atomic number into their relative combinations of low and high atomic number elements. These results demonstrate the rich information present in the data obtained during 4D-STEM imaging of ultrathin 2D materials and the ability of this approach to extract unique insights beyond conventional imaging.

13.
Nanotechnology ; 30(2): 025201, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30382028

RESUMEN

In-plane heterojunction tunnel field effect transistors based on monolayer transition metal dichalcogenides are studied by means of self-consistent non-equilibrium Green's functions simulations and an atomistic tight-binding Hamiltonian. We start by comparing several heterojunctions before focusing on the most promising ones, i.e. WTe2-MoS2 and MoTe2-MoS2. The scalability of those devices as a function of channel length is studied, and the influence of backgate voltages on device performance is analyzed. Our results indicate that, by fine-tuning the design parameters, those devices can yield extremely low subthreshold swings (<5 mV/decade) and I ON/I OFF ratios higher than 108 at a supply voltage of 0.3 V, making them ideal for ultra-low power consumption.

14.
Nano Lett ; 16(12): 7798-7806, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960446

RESUMEN

Atomically thin molybdenum disulfide (MoS2) is an ideal semiconductor material for field-effect transistors (FETs) with sub-10 nm channel lengths. The high effective mass and large bandgap of MoS2 minimize direct source-drain tunneling, while its atomically thin body maximizes the gate modulation efficiency in ultrashort-channel transistors. However, no experimental study to date has approached the sub-10 nm scale due to the multiple challenges related to nanofabrication at this length scale and the high contact resistance traditionally observed in MoS2 transistors. Here, using the semiconducting-to-metallic phase transition of MoS2, we demonstrate sub-10 nm channel-length transistor fabrication by directed self-assembly patterning of mono- and trilayer MoS2. This is done in a 7.5 nm half-pitch periodic chain of transistors where semiconducting (2H) MoS2 channel regions are seamlessly connected to metallic-phase (1T') MoS2 access and contact regions. The resulting 7.5 nm channel-length MoS2 FET has a low off-current of 10 pA/µm, an on/off current ratio of >107, and a subthreshold swing of 120 mV/dec. The experimental results presented in this work, combined with device transport modeling, reveal the remarkable potential of 2D MoS2 for future sub-10 nm technology nodes.

16.
Phys Rev Lett ; 115(1): 017002, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26182116

RESUMEN

We use scanning tunneling spectroscopy to investigate the filled and empty electronic states of superconducting single-unit-cell FeSe deposited on SrTiO3(001). We map the momentum-space band structure by combining quasiparticle interference imaging with decay length spectroscopy. In addition to quantifying the filled-state bands, we discover a Γ-centered electron pocket 75 meV above the Fermi energy. Our density functional theory calculations show the orbital nature of empty states at Γ and explain how the Se height is a key tuning parameter of their energies, with broad implications for electronic properties.

17.
Sci Rep ; 14(1): 8525, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609404

RESUMEN

Rapid and reliable detection of pathogens is crucial to complement the growing industry of mass-reared insects, in order to safeguard the insect colonies from outbreak of diseases, which may cause significant economic loss. Current diagnostic methods are mainly based on conventional PCR and microscopic examination, requiring prior knowledge of disease symptoms and are limited to identifying known pathogens. Here, we present a rapid nanopore-based metagenomics approach for detecting entomopathogens from the European house cricket (Acheta domesticus). In this study, the Acheta domesticus densovirus (AdDV) was detected from diseased individuals using solely Nanopore sequencing. Virus reads and genome assemblies were obtained within twenty-four hours after sequencing. Subsequently, due to the length of the Nanopore reads, it was possible to reconstruct significantly large parts or even the entire AdDV genome to conduct studies for genotype identification. Variant analysis indicated the presence of three AdDV genotypes within the same house cricket population, with association to the vital status of the diseased crickets. This contrast provided compelling evidence for the existence of non-lethal AdDV genotypes. These findings demonstrated nanopore-based metagenomics sequencing as a powerful addition to the diagnostic tool kit for routine pathogen surveillance and diagnosis in the insect rearing industry.


Asunto(s)
Densovirus , Gryllidae , Secuenciación de Nanoporos , Humanos , Animales , Densovirus/genética , Genotipo , Brotes de Enfermedades
18.
Nat Commun ; 14(1): 5905, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737233

RESUMEN

The polymorphic transition from 2H to 1[Formula: see text]-MoTe2, which was thought to be induced by high-energy photon irradiation among many other means, has been intensely studied for its technological relevance in nanoscale transistors due to the remarkable improvement in electrical performance. However, it remains controversial whether a crystalline 1[Formula: see text] phase is produced because optical signatures of this putative transition are found to be associated with the formation of tellurium clusters instead. Here we demonstrate the creation of an intrinsic 1[Formula: see text] lattice after irradiating a mono- or few-layer 2H-MoTe2 with a single field-enhanced terahertz pulse. Unlike optical pulses, the low terahertz photon energy limits possible structural damages. We further develop a single-shot terahertz-pump-second-harmonic-probe technique and reveal a transition out of the 2H-phase within 10 ns after photoexcitation. Our results not only provide important insights to resolve the long-standing debate over the light-induced polymorphic transition in MoTe2 but also highlight the unique capability of strong-field terahertz pulses in manipulating quantum materials.

19.
Trop Med Infect Dis ; 8(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36828490

RESUMEN

Many human clinical cases attributed to vector-borne pathogens are underreported in Malaysia, especially in rural localities where healthcare infrastructures are lacking. Here, 217 small mammals, consisting of rodents and tree shrews, were trapped in oil palm plantations in the Peninsular Malaysia states of Johor and Perak. Species identification was performed using morphological and DNA barcoding analyses, and 203 small mammals were included in the detection of selected vector-borne bacteria. The DNA extracted from the spleens was examined for Orientia tsutsugamushi, Borrelia spp., Bartonella spp. and Rickettsia spp. using established PCR assays. The small mammals collected in this study included Rattus tanezumi R3 mitotype (n = 113), Rattus argentiventer (n = 24), Rattus tiomanicus (n = 22), Rattus exulans (n = 17), Rattus tanezumi sensu stricto (n = 1) and Tupaia glis (n = 40). Orientia tsutsugamushi, Borrelia spp. and Bartonella phoceensis were detected in the small mammals with the respective detection rates of 12.3%, 5.9% and 4.9%. Rickettsia spp., however, was not detected. This study encountered the presence of both Lyme disease and relapsing fever-related borreliae in small mammals collected from the oil palm plantation study sites. All three microorganisms (Orientia tsutsugamushi, Borrelia spp. and Bartonella phoceensis) were detected in the R. tanezumi R3 mitotype, suggesting that the species is a competent host for multiple microorganisms. Further investigations are warranted to elucidate the relationships between the ectoparasites, the small mammals and the respective pathogens.

20.
ACS Nano ; 16(4): 6657-6665, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35344654

RESUMEN

Four-dimensional (4D) scanning transmission electron microscopy is used to study the electric fields at the edges of 2D semiconducting monolayer MoS2. Sub-nanometer 1D features in the 2D electric field maps are observed at the outermost region along zigzag edges and also along nanowire MoS-terminated MoS2 edges. Atomic-scale oscillations are detected in the magnitude of the 1D electromagnetic edge state, with spatial variations that depend on the specific periodic edge reconstructions. Electric field reconstructions, along with integrated differential phase contrast reconstructions, reveal the presence of low Z number atoms terminating many of the uniform edges, which are difficult to detect by annular dark field scanning transmission electron microscopy due to its limited dynamic range. Density functional theory calculations support the formation of periodic 1D edge states and also show that enhancement of the electric field magnitude can occur for some edge terminations. The experimentally observed electric fields at the edges are attributed to the absence of an opposing electric field from a nearest neighbor atom when the electron beam propagates through the 2D monolayer and interacts. These results show the potential of 4D-STEM to map the atomic scale structure and fluctuations of electric fields around edge atoms with different bonding states than bulk atoms in 2D materials, beyond conventional imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA