RESUMEN
BACKGROUND: The molecular mechanism of laryngeal squamous cell carcinoma (LSCC) is not completely clear, which leads to poor prognosis and treatment difficulties for LSCC patients. To date, no study has reported the exact expression level of zinc finger protein 71 (ZNF71) and its molecular mechanism in LSCC. METHODS: In-house immunohistochemistry (IHC) staining (33 LSCC samples and 29 non-LSCC samples) was utilized in analyzing the protein expression level of ZNF71 in LSCC. Gene chips and high-throughput sequencing data collected from multiple public resources (313 LSCC samples and 192 non-LSCC samples) were utilized in analyzing the exact mRNA expression level of ZNF71 in LSCC. Single-cell RNA sequencing (scRNA-seq) data was used to explore the expression status of ZNF71 in different LSCC subpopulations. Enrichment analysis of ZNF71, its positively and differentially co-expressed genes (PDCEGs), and its downstream target genes was employed to detect the potential molecular mechanism of ZNF71 in LSCC. Moreover, we conducted correlation analysis between ZNF71 expression and immune infiltration. RESULTS: ZNF71 was downregulated at the protein level (area under the curve [AUC] = 0.93, p < 0.0001) and the mRNA level (AUC = 0.71, p = 0.023) in LSCC tissues. Patients with nodal metastasis had lower protein expression level of ZNF71 than patients without nodal metastasis (p < 0.05), and male LSCC patients had lower mRNA expression level of ZNF71 than female LSCC patients (p < 0.01). ZNF71 was absent in different LSCC subpopulations, including cancer cells, plasma cells, and tumor-infiltrated immune cells, based on scRNA-seq analysis. Enrichment analysis showed that ZNF71 and its PDCEGs may influence the progression of LSCC by regulating downstream target genes of ZNF71. These downstream target genes of ZNF71 were mainly enriched in tight junctions. Moreover, downregulation of ZNF71 may influence the development and even therapy of LSCC by reducing immune infiltration. CONCLUSION: Downregulation of ZNF71 may promote the progression of LSCC by reducing tight junctions and immune infiltration; this requires further study.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Laríngeas , Humanos , Masculino , Femenino , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , Regulación hacia Abajo , Inmunohistoquímica , Carcinoma de Células Escamosas/patología , ARN Mensajero/genética , Minería de Datos , Dedos de Zinc , Coloración y Etiquetado , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , PronósticoRESUMEN
BACKGROUND: Pulmonary malignant neoplasms have a high worldwide morbidity and mortality, so the study of these malignancies using microRNAs (miRNAs) has attracted great interest and enthusiasm. The aim of this study was to determine the clinical effect of hsa-microRNA-204-5p (miR-204-5p) and its underlying molecular mechanisms in non-small cell lung cancer (NSCLC). METHODS: Expression of miR-204-5p was investigated by real-time quantitative PCR (RT-qPCR). After data mining from public online repositories, several integrative assessment methods, including receiver operating characteristic (ROC) curves, hazard ratios (HR) with 95% confidence intervals (95% CI), and comprehensive meta-analyses, were conducted to explore the expression and clinical utility of miR-204-5p. The potential objects regulated and controlled by miR-204-5p in the course of NSCLC were identified by estimated target prediction and analysis. The regulatory network of miR-204-5p, with its target genes and transcription factors (TFs), was structured from database evidence and literature references. RESULTS: The expression of miR-204-5p was downregulated in NSCLC, and the downtrend was related to gender, histological type, vascular invasion, tumor size, clinicopathologic grade and lymph node metastasis (P<0.05). MiR-204-5p was useful in prognosis, but was deemed unsuitable at present as an auxiliary diagnostic or prognostic risk factor for NSCLC due to the lack of statistical significance in meta-analyses and absence of large-scale investigations. Gene enrichment and annotation analyses identified miR-204-5p candidate targets that took part in various genetic activities and biological functions. The predicted TFs, like MAX, MYC, and RUNX1, interfered in regulatory networks involving miR-204-5p and its predicted hub genes, though a modulatory loop or axis of the miRNA-TF-gene that was out of range with shortage in database prediction, experimental proof and literature confirmation. CONCLUSIONS: The frequently observed decrease in miR-204-5p was helpful for NSCLC diagnosis. The estimated target genes and TFs contributed to the anti-oncogene effects of miR-204-5p.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Biología Computacional/métodos , Redes Reguladoras de Genes/fisiología , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación hacia Abajo/fisiología , Humanos , Neoplasias Pulmonares/genética , MicroARNs/genéticaRESUMEN
BACKGROUND: To examine the clinical value of miR-198-5p in lung squamous cell carcinoma (LUSC). METHODS: Gene Expression Omnibus (GEO) microarray datasets were used to explore the miR-198-5p expression and its diagnostic value in LUSC. Real-time reverse transcription quantitative polymerase chain reaction was used to evaluate the expression of miR-198-5p in 23 formalin-fixed, paraffin-embedded (FFPE) LUSC tissues and corresponding non-cancerous tissues. The correlation between miR-198-5p expression and clinic pathological features was assessed. Meanwhile, putative target messenger RNAs of miR-198-5p were identified based on the analysis of differentially expressed genes in the Cancer Genome Atlas (TCGA) and 12 miRNA prediction tools. Subsequently, the putative target genes were sent to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. RESULTS: MiR-198-5p was low expressed in LUSC tissues. The combined standard mean difference (SMD) values of miR-198-5p expression based on GEO datasets were - 0.30 (95% confidence interval (CI) - 0.54, - 0.06) and - 0.39 (95% CI - 0.83, 0.05) using fixed effect model and random effect model, respectively. The sensitivity and specificity were not sufficiently high, as the area under the curve (AUC) was 0.7749 (Q* = 0.7143) based on summarized receiver operating characteristic (SROC) curves constructed using GEO datasets. Based on the in-house RT-qPCR, miR-198-5p expression was 4.3826 ± 1.7660 in LUSC tissues and 4.4522 ± 1.8263 in adjacent normal tissues (P = 0.885). The expression of miR-198-5p was significantly higher in patients with early TNM stages (I-II) than that in cases with advanced TNM stages (III-IV) (5.4400 ± 1.5277 vs 3.5690 ± 1.5228, P = 0.008). Continuous variable-based meta-analysis of GEO and PCR data displayed the SMD values of - 0.26 (95% CI - 0.48, - 0.04) and - 0.34 (95% CI - 0.71, 0.04) based on fixed and random effect models, respectively. As for the diagnostic value of miR-198-5p, the AUC based on the SROC curve using GEO and PCR data was 0.7351 (Q* = 0.6812). In total, 542 genes were identified as the targets of miR-198-5p. The most enriched Gene Ontology terms were epidermis development among biological processes, cell junction among cellular components, and protein dimerization activity among molecule functions. The pathway of non-small cell lung cancer was the most significant pathway identified using Kyoto Encyclopedia of Genes and Genomes analysis. CONCLUSION: The expression of miR-198-5p is related to the TNM stage. Thus, miR-198-5p might play an important role via its target genes in LUSC.
Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Perfilación de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Curva ROCRESUMEN
BACKGROUND Lung adenocarcinoma (LUAD) is the most frequent lung cancer. MicroRNAs (miRNAs) are believed to have fundamental roles in tumorigenesis of LUAD. Although miRNAs are broadly recognized in LUAD, the role of microRNA-375 in LUAD is still not fully elucidated. MATERIAL AND METHODS We evaluated the significance of miR-375 expression in LUAD by using analysis of a public dataset from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and a literature review. Furthermore, we investigated the biological function of miR-375 by gene ontology enrichment and target prediction analysis. RESULTS MiR-375 expression was significantly higher in LUAD by TCGA data compared to normal lung tissue (p<0.0001). In addition, a common pattern of upregulation for miR-375 in LUAD was found in our review of the literature. A total of 682 genes, both LUAD-related and miR-375-related, were obtained from the analytical integration. Critical pathways were unveiled in the network analysis of the overlaps, such as pentose and glucuronate interconversions, ascorbate and aldarate metabolism, and starch and sucrose metabolism. Furthermore, we identified covert miR-375 associated genes that might participate in LUAD by network analysis, such as FGF2 (fibroblast growth factor 2), PAX6 (paired box 6), and RHOJ. The expression of these three genes were all downregulated in LUAD. Finally, FGF2 was revealed to be negatively correlated with miR-375 in LUAD (r=-0.1821, p=0.0001). CONCLUSIONS Overall, our study provides evidence that miR-375 is essential for the progression of LUAD.
Asunto(s)
Adenocarcinoma/genética , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/genética , Adenocarcinoma del Pulmón , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Pulmón/patología , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Estudios Prospectivos , Mapas de Interacción de Proteínas/genéticaRESUMEN
This study aimed to investigate the mechanisms of LACTB2 in colorectal cancer (CRC). Microarrays and sequencing data of CRC were acquired from UCSC Xena, GTEx, Gene Expression Omnibus, and TCGA. Pooled analysis of the mRNA expression of LACTB2 in CRC was performed using Stata software. The protein expression of LACTB2 in CRC tissues was evaluated by immunohistochemistry. The relationship between immune cell infiltration and LACTB2 expression was investigated using CIBERSORT. The potential signaling pathways and biological mechanisms of LACTB2 were explored using GSEA, KEGG, and GO. Subsequently, further screening of small molecular compounds with potential therapeutic effects on CRC was conducted through the HERB database, followed by molecular docking studies of these compounds with the LACTB2 protein. The integration and analysis of expression data obtained from 2294 CRC samples and 1286 noncancerous colorectal samples showed that LACTB2 was highly expressed in CRC. Immunohistochemistry performed on in-house tissue samples confirmed that LACTB2 protein expression was upregulated in CRC. CIBERSORT revealed lower B cell infiltration levels in the high LACTB2 expression group than in the low expression group. GO, KEGG, and GSEA analyses showed that LACTB2 expression and genes positively correlating with it were mainly related to DNA synthesis and repair, mitochondrial translational elongation and translational termination, phosphorylation, and mTORC1 signaling. Finally, molecular docking simulations confirmed the ability of quercitin to target and bind to LACTB2. This is the first study to demonstrate that LACTB2 is upregulated in CRC. LACTB2 promotes colorectal tumorigenesis and tumor progression.
RESUMEN
Background: Colorectal cancer (CRC) is a major global health challenge with a need for new biomarkers and therapeutic targets. This work aimed to investigate the biological mechanisms and clinical value of Ly1 antibody reactive (LYAR) in CRC. Methods: We analyzed LYAR mRNA expression across multiple public databases, including genotype-tissue expression, gene expression omnibus, Oncomine, and the cancer genome atlas, alongside in-house immunohistochemical data to evaluate LYAR protein expression in CRC and non-CRC colorectal tissues. Gene set enrichment analysis (GSEA) was used to elucidate LYAR's biological functions, and its impact on the tumor immune microenvironment was assessed using CIBERSORT, ESTIMATE, and single-cell RNA sequencing techniques. In addition, LYAR's association with clinicopathological features and patient prognosis was explored, and its influence on drug sensitivity was investigated using the Connectivity Map database. Results: LYAR was significantly upregulated in CRC tissues compared with non-CRC colorectal counterparts, associated with altered immune cell composition and enhanced RNA processing, splicing, and cell cycle regulation. High LYAR expression correlated with poor disease-free and overall survival, underscoring its prognostic value. GSEA revealed LYAR's involvement in critical cellular processes and pathways, including DNA repair, cell cycle, and mTORC1 signaling. Correlation analysis identified genes positively and negatively associated with LYAR, leading to the discovery of temsirolimus and WYE-354, mTOR inhibitors, as potential therapeutic agents for CRC. Furthermore, LYAR expression predicted increased sensitivity to cetuximab in RAS wild-type metastatic CRC, indicating its utility as a biomarker for treatment responsiveness. Conclusions: LYAR's upregulation in CRC highlights its potential as a biomarker for prognosis and therapeutic targeting, offering insights into CRC pathology and suggesting new avenues for treatment optimization.
RESUMEN
OBJECTIVE: To detect the expression of non-secretory CXCL16 and its impact on malignant biological behaviors in breast cancer cell lines. METHODS: RT-PCR was carried out to examine the expression of CXCL16 mRNA in breast cancer cell lines with different aggressiveness SK-BR-3, MCF-7, MDA-MB-231, MDA-MB-435S and human mammary normal epithelial cell; MCF-10A. The eukaryotic expression plasmid of CXCL16 was transfected into MDA-MB-231 cells and overexpression of CXCL16 was confirmed by Real time PCR and Western blot. Boyden Chamber assay was used to determine cell migration and invasion, while MTT assay was performed to determine cell proliferation. RESULTS: Among four breast cancer cell lines, CXCL16 mRNA was highly expressed in MCF-7, lowly expressed in MDA-MB-231, while MCF-10A faintly expressed CXCL16. Overexpression of CXCL16 led to a decrease in cell migration, invasion but not proliferation in MDA-MB-231 cells. CONCLUSION: Expression of non-secretory CXCL16 is associated with aggressiveness of breast cancer cell lines, and CXCL16 expression inhibits cell migration and invasion in vitro.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Quimiocinas CXC/metabolismo , Receptores Depuradores/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Quimiocina CXCL16 , Quimiocinas CXC/genética , Femenino , Humanos , Invasividad Neoplásica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Depuradores/genéticaRESUMEN
Nasopharyngeal carcinoma (NPC) is a highly metastatic and invasive malignant tumor that originates in the nasopharynx. The DNA-binding protein WD repeat and HMG-box DNA-binding protein 1 (WDHD1) are highly expressed in a variety of tumours, but its expression and mechanism of action in NPC have not been reported to date. To investigate the involvement of WDHD1 in NPC, we first mined databases for the gene expression profile of NPC. Immunohistochemistry (IHC) was performed on 338 cases of NPC and 112 non-NPC samples to verify the results. We report that the expression of WDHD1 is significantly elevated in NPC. ChIP-seq was used to show that integrin alpha V (ITGAV) and WDHD1 exhibit a significant binding peak in the promoter region of the ITGAV gene. The expression levels of ITGAV and WDHD1 exhibit a significant positive correlation, and IHC was performed to show that ITGAV is highly expressed in NPC. Expression of ITGAV increased after overexpression of WDHD1, suggesting that ITGAV may be a potential target gene of WDHD1. Pathway analysis showed that both genes were closely related to the cell cycle, and flow cytometry was used to further confirm that decreased expression of WDHD1 significantly increased the number of apoptotic cells. In conclusion, our results suggest that expression of WDHD1 is increased in NPC and is likely to be associated with the NPC cell cycle; thus, we propose that WDHD1 may have the potential as a target gene for primary screening and treatment of NPC.
Asunto(s)
Integrina alfaV , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Línea Celular Tumoral , Proteínas de Unión al ADN , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologíaRESUMEN
Background: Radiation resistance is a challenge that limits the therapeutic benefit of colorectal cancer (CRC) treatment, but the mechanism underlying CRC radiation resistance remains unclear. Andrographolide shows a broad-spectrum anti-tumor effect in various malignancies, including CRC, its effect and how it functions in CRC initiation, and radiation have not been established. This study aimed to explore the mechanism of CRC radiation resistance and the potential mechanisms of andrographolide on CRC radiation. Methods: Two acquired radioresistant cell lines were established and high throughput sequencing was employed to screen out the differentially expressed genes. The expression of AZGP1, which was upregulated in the acquired radioresistant tissues, was verified by microarray data recomputing. The common targets of andrographolide, CRC initiation, and radiation resistance were obtained, and the corresponding functional enrichment and pathway analysis were performed. The interaction between AZGP1 and andrographolide was investigated using molecular docking. Results: AZGP1 was upregulated in both the radioresistant cell model and microarray data. Moreover, AZGP1 was upregulated in cancerous colorectal tissue and displayed a tendency toward elevated expression in patients with an unfavorable prognosis. AZGP1 was identified as the common target of andrographolide, colorectal cancer initiation, and radiotherapy resistance. Ultimately, the protein structure of AZGP1 proved to be closely intertwined with the crystal texture of andrographolide. Conclusion: AZGP1 is recognized as a crucial factor for both CRC initiation and radioresistance. Andrographolide may affect the radioresistance of CRC via the targeting of AZGP1. Thus, the combination of andrographolide and AZGP1 intervention might be a promising strategy for improving the treatment benefit of CRC radiotherapy.
RESUMEN
Nasopharyngeal carcinoma (NPC) has insidious onset, late clinical diagnosis and high recurrence rate, which leads to poor quality of patient life. Therefore, it is necessary to further explore the pathogenesis and therapy targets of NPC. BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) was found to be up-regulated in a variety of cancers, but only two previous study showed that BUB1B was overexpressed in NPC and the sample size was small. The clinical role of BUB1B expression and its underlying mechanism in NPC require more in-depth research. Immunohistochemical samples and public RNA-seq data indicated that BUB1B protein and mRNA expression levels were up-regulated in NPC, and summary receiver operating characteristic curve indicated that BUB1B expression level had a strong ability to distinguish NPC tissues from non-NPC tissues. Gene ontology and Kyoto Encyclopedia of genes and genomes were performed and revealed that BUB1B and its related genes were mainly involved in cell cycle and DNA replication. Protein- Protein Interaction were built to interpret the BUB1B molecular mechanism. Histone deacetylase 2 (HDAC2) could be the upstream regulation factor of BUB1B, which was verified by Chromatin Immunoprecipitation Sequencing samples. In summary, BUB1B was highly expressed in NPC, and HDAC2 may affect cell cycle by regulating BUB1B to promote cancer progression.
Asunto(s)
Neoplasias Nasofaríngeas , Proteínas Serina-Treonina Quinasas , Humanos , Carcinoma Nasofaríngeo/genética , Regulación hacia Arriba , Proteínas Serina-Treonina Quinasas/genética , Ciclo Celular/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Regulación Neoplásica de la Expresión Génica , Proteínas de Ciclo Celular/genéticaRESUMEN
Aim: To investigate the clinical role of transmembrane protease serine 3 (TMPRSS3) in radioresistance and prognosis of colorectal cancer (CRC). Methods: Standardized mean difference (SMD) and summary area under the curve (AUC) of TMPRSS3 were calculated by combining all available high-throughput data globally. The prognostic significance of TMPRSS3 was determined by Kaplan-Meier and Cox regression analyses. Results:TMPRSS3 was remarkably upregulated in 198 CRC radioresistant cases compared with nonradioresistance (SMD = 0.38, AUC = 0.71). Overexpression of TMPRSS3 was observed in 1601 CRC patients compared with control subjects without CRC. TMPRSS3 was a risk factor for disease-free survival of CRC with the summarized hazard ratio 1.28. Conclusion: TMPRSS3 contributes to the radioresistance and unfavorable prognosis of CRC.
Asunto(s)
Neoplasias Colorrectales , ARN Mensajero , Serina Endopeptidasas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/radioterapia , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tolerancia a Radiación , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Regulación hacia ArribaRESUMEN
Background: Cell division cycle 45 (CDC45) plays an important role in the occurrence and development of numerous carcinomas, but its effect in laryngeal squamous cell carcinoma (LSCC) remains unclear. Materials and Methods: The messenger RNA and protein expression levels of CDC45 in LSCC were evaluated with a t test and the standard mean difference (SMD). The ability of CDC45 expression to distinguish the LSCC was assessed through receiver operating characteristic (ROC) curves. Gene set enrichment analysis (GSEA), protein-protein interaction, public databases, and online tools were used to explore the potential molecular mechanism of CDC45 in LSCC. Results: A high expression of CDC45 was identified in LSCC (SMD = 2.61, 95% confidence interval [1.62-3.61]). Through ROC curves, the expression of CDC45 makes it feasible to distinguish the LSCC group from the non-LSCC counterpart. CDC45 was relevant to the progression-free interval of LSCC patients (log-rank p = 0.03). GSEAs show that CDC45 is related to the cell cycle. CDC45, CDC6, KIF2C, and AURKB were identified as hub genes of LSCC. E2F1 may be the regulatory transcription factor of CDC45. Conclusions: High expression of CDC45 likely demonstrates carcinogenic effects in LSCC, and CDC45 is a potential target in screening and treatment of LSCC.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Laríngeas , Carcinoma de Células Escamosas/patología , Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genéticaRESUMEN
BACKGROUND: Currently, high expression of WD repeat and HMG-box DNA binding protein 1 (WDHD1) has been found in a variety of tumors; but there is no research has been conducted concerning the expression of WDHD1 in laryngeal squamous cell carcinoma (LSCC). Our purpose is to investigate the expression and the latent mechanism of WDHD1 in LSCC. METHODS: Firstly, 9 data sets from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and ArrayExpress were statistically analyzed to explore the expression of WDHD1 in LSCC; immunohistochemistry was performed in 79 LSCC tissues and 44 non-cancer tissues to further verify the result. In addition, the target gene of WDHD1 was predicted and immunohistochemistry was used to detect the expression of the target gene. The potential mechanism of WDHD1 in LSCC was investigated by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and protein-protein interaction network (PPI). RESULTS: The WDHD1 mRNA was expressed at higher levels in the LSCC tissue than in the normal tissue (SMD=1.90, 95% CI=1.50-2.30); and the results of immunohistochemistry were consistent with the conclusion. Using chip-seq analysis, we found that S-phase kinase-associated protein 2 (Skp2) had a significant binding peak with WDHD1, and the expression of these two genes was significantly positively correlated. Immunohistochemistry showed that Skp2 was also highly expressed in LSCC. In addition, GO and KEGG analysis revealed the WDHD1 positively correlated genes was closely related to cell cycle, and PPI analysis identified 10 hub genes: COL7A1, COL4A2, COL4A1, COL4A6, COL11A1, COL5A2, COL1A1, COL13A1, COL8A1 and COL10A1, which may be critical to the progression of LSCC. CONCLUSIONS: WDHD1 was overexpressed in LSCC tissues. Meanwhile, WDHD1 and its target gene Skp2 for transcriptional regulation may play a role in the progression of LSCC by regulating the cell cycle.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neoplasias Laríngeas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Ciclo Celular , Proliferación Celular , Colágeno/genética , Colágeno/metabolismo , Proteínas de Unión al ADN/genética , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patologíaRESUMEN
Hepatocellular carcinoma (HCC) is a leading cause of mortality in cancer patients, but the association between miR-125b-2-3p and the onset and prognosis of HCC has not been reported in previous studies; thus, the clinicopathological implications of miR-125b-2-3p in HCC require elaboration. To examine the expression of miR-125b-2-3p in HCC, both in-house RT-qPCR and public datasets were used to calculate the standard mean difference (SMD) and the summary receiver operating characteristic (sROC). MiR-125b-2-3p was markedly lower in HCC than in non-tumor tissue as assessed by the in-house RT-qPCR which was confirmed by the integrative analysis showing the SMD being -0.69 and the area under the curve (AUC) being 0.84 based on 1,233 cases of HCC and 630 cases of non-HCC controls. To gain a overview of the clinical value of miR-125b-2-3p in HCC, all possible datasets were integrated, and lower miR-125b-2-3p levels could lead to poorer differentiation and a more advanced clinical stage of HCC. The hazard ratio (HR) of miR-125b-2-3p was also calculated using a Cox proportional hazards model, and the miR-125b-2-3p level could act as an protective indication for the survival with the HR being 0.74 based on 586 cases of HCC. Furthermore, the effect of nitidine chloride (NC), a natural bioactive phytochemical alkaloid, on the regulation of miR-125b-2-3p and its potential targets was also investigated. The miR-125b-2-3p level was increased after NC treatment, while the expression of its potential target PRKCA was reduced. Above all, a low-expressed level of miR-125b-2-3p plays a tumor suppressive role in HCC.
Asunto(s)
Carcinoma Hepatocelular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , MicroARNs/genética , Carcinoma Hepatocelular/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Masculino , MicroARNs/metabolismo , Pronóstico , Curva ROC , Factores de RiesgoRESUMEN
BACKGROUND: Colorectal cancer (CRC) represents the third most common malignant tumor in the worldwide. Radiotherapy is the common therapeutic treatment for CRC, but radiation resistance is often encountered. ChIP-seq of Histone H3K27 acetylation (H3K27ac) has revealed enhancers that play an important role in CRC. This study examined the relationship between an active CRC enhancer and claudin-1 (CLDN1), and its effect on CRC radiation resistance. METHODS: The target CRC genes of active enhancers were obtained from public H3K27ac ChIP-seq, and the genes highly expressed in radio-resistant CRC were screened and intersected with enhancer-driven genes. The clinical roles of CLDN1 in radiation resistance were examined using the t-test, standard mean deviation (SMD), summary receiver operating characteristic curve and Kaplan-Meier curves. The co-expressed genes of CLDN1 were calculated using Pearson Correlation analysis, and Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes and Gene Set Variation Analysis (GSVA) analyses were used to examine the molecular mechanisms of CLDN1. RESULTS: Total 13 703 CRC genes were regulated by enhancers using 58 H3K27ac ChIP-seq. Claudin-1 (CLDN1) was enhancer-driven and notably up-regulated in CRC tissues compared to non-CRC controls, with a SMD of 3.45 (95 CI % = .56-4.35). CLDN1 expression was increased in radiation-resistant CRC with a SMD of .42 (95% CI = .16-.68) and an area under the curve of .74 (95% CI = .70-.77). The cell cycle and immune macrophage levels were the most significant pathways associated with CLDN1. CONCLUSION: CLDN1 as an enhancer-regulated gene that can boost radiation resistance in patients with CRC.
RESUMEN
Although the molecular studies of single gastrointestinal tumors have been widely reported by media, it is not clear about the function of small nucleolar RNA (snoRNA) in the progression, development and prognostic significance in colon adenocarcinoma, and its certain molecular mechanisms and functions remain to be studied. This study aims to dig out the gene expression data profile of colon adenocarcinoma and construct the prognostic molecular pathology prediction-evaluation, ultimately revealing the clinical prognostic value of snoRNA in colon adenocarcinoma. 932 differentially expressed snoRNAs of the colon adenocarcinoma were obtained by edgeR R package. Only 4 prognostically-significant snoRNAs (SNORD14E, SNORD67, SNORD12C, and SNORD17) (P < 0.05) were discovered after univariate COX regression mode analysis. Moreover, through multivariate COX regression mode analysis, 2 prognostically-significant snoRNAs (SNORD14E and SNORD67) (P < 0.05) were obtained. Using the above 473 COAD samples, a prognostic model of risk score was constructed. The inflection point of the prognostic risk score acted as a boundary to divide the patients into high-risk and low-risk groups. The K-M survival curve of the prognostic model of risk score revealed that high risk group has a lower survival rate (P < 0.05). The research has successfully provided valuable prognostic factors and prognostic models for patients with malignant colon tumor.
Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Neoplasias del Colon/genética , ARN Nucleolar Pequeño/genética , Adenocarcinoma/patología , Neoplasias del Colon/patología , Humanos , Pronóstico , Análisis de Secuencia de ARNRESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is the second-highest cause of malignancy-related death worldwide, and many physiological and pathological processes, including cancer, are regulated by microRNAs (miRNAs). miR-193a-3p is an anti-oncogene that plays an important part in health and disease biology by interacting with specific targets and signals. METHODS: In vitro assays were performed to explore the influences of miR-193a-3p on the propagation and apoptosis of HCC cells. The sequencing data for HCC were obtained from The Cancer Genome Atlas (TCGA), and the expression levels of miR-193a-3p in HCC and non-HCC tissues were calculated. The differential expression of miR-193a-3p in HCC was presented as standardized mean difference (SMD) with 95% confidence intervals (CIs) in Stata SE. The impact of miR-193a-3p on the prognoses of HCC patients was determined by survival analysis. The potential targets of miR-193a-3p were then predicted using miRWalk 2.0 and subjected to enrichment analyses, including Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Protein-Protein Interaction (PPI) network analysis. The interaction between miR-193a-3p and one predicted target, Cyclin D1 (CCND1), was verified by dual luciferase reporter assays and Pearson correlation analysis. RESULTS: MiR-193a-3p inhibited the propagation and facilitated the apoptosis of HCC cells in vitro. The pooled SMD indicated that miR-193a-3p had a low level of expression in HCC (SMD: -0.88, 95% CI [-2.36 -0.59]). Also, HCC patients with a higher level of miR-193a-3p expression tended to have a favorable overall survival (OS: HR = 0.7, 95% CI [0.43-1.13], P = 0.14). For the KEGG pathway analysis, the most related pathway was "proteoglycans in cancer", while the most enriched GO term was "protein binding". The dual luciferase reporter assays demonstrated the direct interaction between miR-193a-3p and CCND1, and the Pearson correlation analysis suggested that miR-193a-3p was negatively correlated with CCND1 in HCC tissues (R = - 0.154, P = 0.002). CONCLUSION: miR-193a-3p could suppress proliferation and promote apoptosis by targeting CCND1 in HCC cells. Further, miR-193a-3p can be used as a promising biomarker for the diagnosis and treatment of HCC in the future.
RESUMEN
PURPOSE: To evaluate a radiomic approach for the stratification of diffuse gliomas with distinct prognosis and provide additional resolution of their clinicopathological and molecular characteristics. METHODS: For this retrospective study, a total of 704 radiomic features were extracted from the multi-channel MRI data of 166 diffuse gliomas. Survival-associated radiomic features were identified and submitted to distinguish glioma subtypes using consensus clustering. Multi-layered molecular data were used to observe the different clinical and molecular characteristics between radiomic subtypes. The relative profiles of an array of immune cell infiltrations were measured gene set variation analysis approach to explore differences in tumor immune microenvironment. RESULTS: A total of 6 categories, including 318 radiomic features were significantly correlated with the overall survival of glioma patients. Two subgroups with distinct prognosis were separated by consensus clustering of radiomic features that significantly associated with survival. Histological stage and molecular factors, including IDH status and MGMT promoter methylation status were significant differences between the two subtypes. Furthermore, gene functional enrichment analysis and immune infiltration pattern analysis also hinted that the inferior prognosis subtype may more response to immunotherapy. CONCLUSION: A radiomic model derived from multi-parameter MRI of the gliomas was successful in the risk stratification of diffuse glioma patients. These data suggested that radiomics provided an alternative approach for survival estimation and may improve clinical decision-making.
Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Femenino , Glioma/genética , Glioma/inmunología , Glioma/patología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Pronóstico , Estudios Retrospectivos , Transcriptoma , Microambiente Tumoral/inmunologíaRESUMEN
Lung adenocarcinoma (LUAD), the main subtype of non-small cell lung cancer, is known to be regulated by various microRNAs (miRs/miRNAs); however, the role of miR-198-5p in LUAD has not been clarified. In the present study, the clinical value of miR-198-5p in LUAD and its potential molecular mechanism was evaluated. miR-198-5p expression was examined by reverse transcription-quantitative PCR (RT-qPCR) in 101 paired LUAD and adjacent normal lung tissues. Subsequently, the miR-198-5p expression level was determined from microarray data from the Gene Expression Omnibus, ArrayExpress and by meta-analyses. Furthermore, the target mRNAs of miR-198-5p from 12 miRNA-mRNA predictive tools were intersected with The Cancer Genome Atlas (TCGA)-based differentially expressed genes. In addition, Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to determine the possible mechanism of miR-198-5p in LUAD. The Search Tool for the Retrieval of Interacting Genes/Proteins database was employed to construct a protein-protein interaction network among the potential target genes of miR-198-5p. The results showed that miR-198-5p expression was lower in LUAD tissues than in adjacent non-cancerous lung tissues (4.469±2.495 vs. 5.301±2.502; P=0.015). Meta-analyses, including the data from the present study and online microarray data, also verified the downregulation of miR-198-5p in 584 cases of LUAD. The expression of miR-198-5p was associated with the age, blood vessel invasion, Tumor-Node-Metastasis stage, and lymph node metastasis of patients with LUAD and served as an independent prognostic factor for survival. The hub genes of miR-198-5p were upregulated in LUAD, according to TCGA and The Human Protein Atlas. For the KEGG pathway analysis, the most enriched KEGG pathway was the p53 signaling pathway (P=1.42×10-6). These findings indicated that the downregulation of miR-198-5p may play a pivotal role in the development of LUAD by targeting various signaling pathways.
RESUMEN
MicroRNAs (miRNAs) are confirmed to be tumor promoters or suppressors in multiple squamous cell carcinomas (SCCs). miR-99a-5p has been demonstrated to be downregulated in cancerous tissues, but its functional role in head and neck SCC (HNSCC) and its mechanism of action have not been fully elucidated. Here, we studied the expression of miR-99a-5p in HNSCC and performed a clinical value assessment and then extracted mature expression data from The Cancer Genome Atlas (TCGA) and microarrays from Gene Expression Omnibus (GEO). Furthermore, biological analysis was constructed via online prediction tools. The results revealed that miR-99a-5p expression was markedly lower in HNSCC tissues than in normal tissues, which also showed significance in the prognosis of HNSCC. However, its diagnostic value could not be verified due to the lack of body fluid samples. Additionally, miR-99a-5p was expressed at higher levels in patients with low histological grade neoplasms than those with high histological grade neoplasms. The age of the patient might also be a possible clinical parameter affecting miR-99a-5p expression. Furthermore, miR-99a-5p significantly influenced HNSCC progression by regulating the PI3K-Akt signaling pathway, in which the key target genes were upregulated in 519 HNSCC tissues compared to 44 normal tissues, as determined by the Gene Expression Profiling Interactive Analysis (GEPIA). In conclusion, our study may provide insights into the expression and mechanism of miR-99a-5p in HNSCC. Further studies are required to elucidate the role of miR-99a-5p and its potential clinical applications for HNSCC.