Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biosens Bioelectron ; 219: 114770, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270082

RESUMEN

The detection of repetitive sequences with single-base resolution is becoming increasingly important aiming to understand the biological implications of genomic variation in these sequences. However, there is a lack of techniques to experimentally validate sequencing data from repetitive sequences obtained by Next-Generation Sequencing methods, especially in the case of Single-Nucleotide Variations (SNVs). That is one of the reasons why repetitive sequences have been poorly studied and excluded from most genomic studies. Therefore, in addition to sequencing data, there is an urgent need for efficient validation methods of genomic variation in these sequences. Herein we report the development of chemFISH, an alternative method for the detection of SNVs in repetitive sequences. ChemFISH is an innovative method based on dynamic chemistry labelling and abasic Peptide Nucleic Acid (PNA) probes to detect in situ the α-satellite DNA, organized in tandem repeats, with single-base resolution in a direct and rapid reaction. With this approach, we detected by microscopy the α-satellite DNA in a variety of human cell lines, we quantified the detection showing a low coefficient of variation among samples (13.16%-25.33%) and we detected single-base specificity with high sensitivity (82.41%-88.82%). These results indicate that chemFISH can serve as a rapid method to validate previously detected SNVs in sequencing data, as well as to find novel SNVs in repetitive sequences. Furthermore, the versatile chemistry behind chemFISH can lead to develop novel molecular assays for the in situ detection of nucleic acids.

2.
Bioorg Med Chem ; 17(3): 959-66, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18343124

RESUMEN

The search for novel, generally applicable and highly efficient delivery tools is a major activity in the biotechnology arena. Using highly optimized microwave based solid-phase chemistry a series of fluorescein-labelled cationic peptoid conjugates were synthesized within 24h and cellular uptake into HeLa, L929 and K562 cells examined via flow cytometry. As expected, analysis revealed that longer oligomers achieved greater cellular penetration (7e (9 mer)>7d (7 mer)>7c (5 mer)>7b (3 mer)>7a (1 mer)) with the nonamer 7e proving to be a remarkable vehicle for all the cell lines, showing excellent penetrability into K562 and L929 cells and extraordinary cell delivery into HeLa cells. Confocal microscopy showed that the hybrid peptoid-nuclear localizing sequence (PKKKRKV from the simian virus 40 large T antigen) resulted in very high levels of nuclei delivery after 3h, opening up a range of applications such as nuclei staining of living cells with non-DNA-intercalating fluorescent probes.


Asunto(s)
Fluoresceína/química , Colorantes Fluorescentes/química , Péptidos/síntesis química , Péptidos/metabolismo , Peptoides/síntesis química , Peptoides/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Núcleo Celular/química , Citometría de Flujo , Células HeLa , Humanos , Ratones , Péptidos/química , Peptoides/química
3.
Talanta ; 200: 51-56, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31036216

RESUMEN

miRNAs are well known for being implicated in a myriad of biological situations, including those related to serious diseases. Amongst miRNAs, miRNA-21 has the spotlight as it is reported to be up-regulated in multiple severe pathological conditions, being its quantification a key point in medicine. To date, most of the techniques for miRNA quantification have shown to be less effective than expected; thus, we herein present a novel, rapid, cost-effective, robust and PCR-free approach, based on dynamic chemistry, for the identification and quantification of miRNA directly from tumour cells using both FACS and a fluorescent microplate. This dynamic chemistry novel application involves bead based reagents and allows quantifying the number of miR-21 molecules presented in MDA-MB-468 and H1975 tumour cells.


Asunto(s)
MicroARNs/genética , Citometría de Flujo , Humanos , Células Tumorales Cultivadas
4.
Talanta ; 161: 489-496, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27769437

RESUMEN

Over the last decade, circulating microRNAs have received attention as diagnostic and prognostic biomarkers. In particular, microRNA122 has been demonstrated to be an early and more sensitive indicator of drug-induced liver injury than the widely used biomarkers such as alanine aminotransferase and aspartate aminotransferase. Recently, microRNA122 has been used in vitro to assess the cellular toxicity of new drugs and as a biomarker for the development of a rapid test for drug overdose/liver damage. In this proof-of-concept study, we report a PCR-free and label-free detection method that has a limit of detection (3 standard deviations) of 15 fmoles of microRNA122, by integrating a dynamic chemical approach for "Single Nucleobase Labelling" with a bead-based platform (Luminex®) thereby, in principle, demonstrating the exciting prospect of rapid and accurate profiling of any microRNAs related to diseases and toxicology.


Asunto(s)
MicroARNs/análisis , Biomarcadores , Límite de Detección , Microesferas , Sondas de Ácido Nucleico , Ácidos Nucleicos de Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA