Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
EMBO J ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160274

RESUMEN

Splicing and endoplasmic reticulum (ER)-proteostasis are two key processes that ultimately regulate the functional proteins that are produced by a cell. However, the extent to which these processes interact remains poorly understood. Here, we identify SNRPB and other components of the Sm-ring, as targets of the unfolded protein response and novel regulators of export from the ER. Mechanistically, The Sm-ring regulates the splicing of components of the ER export machinery, including Sec16A, a component of ER exit sites. Loss of function of SNRPB is causally linked to cerebro-costo-mandibular syndrome (CCMS), a genetic disease characterized by bone defects. We show that heterozygous deletion of SNRPB in mice resulted in bone defects reminiscent of CCMS and that knockdown of SNRPB delays the trafficking of type-I collagen. Silencing SNRPB inhibited osteogenesis in vitro, which could be rescued by overexpression of Sec16A. This rescue indicates that the role of SNRPB in osteogenesis is linked to its effects on ER-export. Finally, we show that SNRPB is a target for the unfolded protein response, which supports a mechanistic link between the spliceosome and ER-proteostasis. Our work highlights components of the Sm-ring as a novel node in the proteostasis network, shedding light on CCMS pathophysiology.

2.
Am J Hum Genet ; 111(7): 1383-1404, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38908375

RESUMEN

The neurodevelopmental disorders Prader-Willi syndrome (PWS) and Schaaf-Yang syndrome (SYS) both arise from genomic alterations within human chromosome 15q11-q13. A deletion of the SNORD116 cluster, encoding small nucleolar RNAs, or frameshift mutations within MAGEL2 result in closely related phenotypes in individuals with PWS or SYS, respectively. By investigation of their subcellular localization, we observed that in contrast to a predominant cytoplasmic localization of wild-type (WT) MAGEL2, a truncated MAGEL2 mutant was evenly distributed between the cytoplasm and the nucleus. To elucidate regulatory pathways that may underlie both diseases, we identified protein interaction partners for WT or mutant MAGEL2, in particular the survival motor neuron protein (SMN), involved in spinal muscular atrophy, and the fragile-X-messenger ribonucleoprotein (FMRP), involved in autism spectrum disorders. The interactome of the non-coding RNA SNORD116 was also investigated by RNA-CoIP. We show that WT and truncated MAGEL2 were both involved in RNA metabolism, while regulation of transcription was mainly observed for WT MAGEL2. Hence, we investigated the influence of MAGEL2 mutations on the expression of genes from the PWS locus, including the SNORD116 cluster. Thereby, we provide evidence for MAGEL2 mutants decreasing the expression of SNORD116, SNORD115, and SNORD109A, as well as protein-coding genes MKRN3 and SNRPN, thus bridging the gap between PWS and SYS.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Intrínsecamente Desordenadas , Síndrome de Prader-Willi , Humanos , Cromosomas Humanos Par 15/genética , Citoplasma/metabolismo , Células HEK293 , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Síndrome de Prader-Willi/genética , Proteínas/genética , Proteínas/metabolismo , ARN Nucleolar Pequeño/genética
3.
Traffic ; 25(4): e12934, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613404

RESUMEN

Alzheimer's disease (AD) pathology is characterized by amyloid beta (Aß) plaques and dysfunctional autophagy. Aß is generated by sequential proteolytic cleavage of amyloid precursor protein (APP), and the site of intracellular APP processing is highly debated, which may include autophagosomes. Here, we investigated the involvement of autophagy, including the role of ATG9 in APP intracellular trafficking and processing by applying the RUSH system, which allows studying the transport of fluorescently labeled mCherry-APP-EGFP in a systematic way, starting from the endoplasmic reticulum. HeLa cells, expressing the RUSH mCherry-APP-EGFP system, were investigated by live cell imaging, immunofluorescence, and Western blot. We found that mCherry-APP-EGFP passed through the Golgi faster in ATG9 knockout cells. Furthermore, ATG9 deletion shifted mCherry-APP-EGFP from early endosomes and lysosomes toward the plasma membrane concomitant with reduced endocytosis. Importantly, this alteration in mCherry-APP-EGFP transport resulted in increased secreted mCherry-soluble APP and C-terminal fragment-EGFP. These effects were also phenocopied by pharmacological inhibition of ULK1, indicating that autophagy is regulating the intracellular trafficking and processing of APP. These findings contribute to the understanding of the role of autophagy in APP metabolism and could potentially have implications for new therapeutic approaches for AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Péptidos beta-Amiloides , Células HeLa , Transporte Biológico , Autofagia
4.
Open Biol ; 14(6): 240033, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919062

RESUMEN

Aspergillus fumigatus is the predominant mould pathogen for humans. Adaption to host-imposed iron limitation has previously been demonstrated to be essential for its virulence. [2Fe-2S] clusters are crucial as cofactors of several metabolic pathways and mediate cytosolic/nuclear iron sensing in fungi including A. fumigatus. [2Fe-2S] cluster trafficking has been shown to involve BolA family proteins in both mitochondria and the cytosol/nucleus. Interestingly, both A. fumigatus homologues, termed Bol1 and Bol3, possess mitochondrial targeting sequences, suggesting the lack of cytosolic/nuclear versions. Here, we show by the combination of mutational, proteomic and fluorescence microscopic analyses that expression of the Bol3 encoding gene leads to dual localization of gene products to mitochondria and the cytosol/nucleus via alternative translation initiation downstream of the mitochondrial targeting sequence, which appears to be highly conserved in various Aspergillus species. Lack of either mitochondrial Bol1 or Bol3 was phenotypically inconspicuous while lack of cytosolic/nuclear Bol3 impaired growth during iron limitation but not iron sensing which indicates a particular importance of [2Fe-2S] cluster trafficking during iron limitation. Remarkably, cytosolic/nuclear Bol3 differs from the mitochondrial version only by N-terminal acetylation, a finding that was only possible by mutational hypothesis testing.


Asunto(s)
Aspergillus fumigatus , Citosol , Proteínas Fúngicas , Hierro , Mitocondrias , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Citosol/metabolismo , Mitocondrias/metabolismo , Hierro/metabolismo , Adaptación Fisiológica , Núcleo Celular/metabolismo , Transporte de Proteínas , Proteómica/métodos , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Regulación Fúngica de la Expresión Génica , Acetilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA