Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cereb Cortex ; 26(4): 1778-94, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26819275

RESUMEN

Severe myoclonic epilepsy of infancy (SMEI) is associated with loss of function of the SCN1A gene encoding the NaV1.1 sodium channel isoform. Previous studies in Scn1a(-/+) mice during the pre-epileptic period reported selective reduction in interneuron excitability and proposed this as the main pathological mechanism underlying SMEI. Yet, the functional consequences of this interneuronal dysfunction at the circuit level in vivo are unknown. Here, we investigated whether Scn1a(-/+) mice showed alterations in cortical network function. We found that various forms of spontaneous network activity were similar in Scn1a(-/+) during the pre-epileptic period compared with wild-type (WT) in vivo. Importantly, in brain slices from Scn1a(-/+) mice, the excitability of parvalbumin (PV) and somatostatin (SST) interneurons was reduced, epileptiform activity propagated more rapidly, and complex synaptic changes were observed. However, in vivo, optogenetic reduction of firing in PV or SST cells in WT mice modified ongoing network activities, and juxtasomal recordings from identified PV and SST interneurons showed unaffected interneuronal firing during spontaneous cortical dynamics in Scn1a(-/+) compared with WT. These results demonstrate that interneuronal hypoexcitability is not observed in Scn1a(-/+) mice during spontaneous activities in vivo and suggest that additional mechanisms may contribute to homeostatic rearrangements and the pathogenesis of SMEI.


Asunto(s)
Corteza Cerebral/fisiopatología , Interneuronas/fisiología , Síndrome de Opsoclonía-Mioclonía/fisiopatología , Potenciales de Acción , Animales , Ondas Encefálicas , Modelos Animales de Enfermedad , Femenino , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Vías Nerviosas/fisiopatología , Síndrome de Opsoclonía-Mioclonía/genética , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Potenciales Sinápticos
2.
Cereb Cortex ; 23(3): 581-93, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22368083

RESUMEN

Synapsins (Syn I, Syn II, and Syn III) are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. SYN1/2 genes have been identified as major epilepsy susceptibility genes in humans and synapsin I/II/III triple knockout (TKO) mice are epileptic. However, excitatory and inhibitory synaptic transmission and short-term plasticity have never been analyzed in intact neuronal circuits of TKO mice. To clarify the generation and expression of the epileptic phenotype, we performed patch-clamp recordings in the CA1 region of acute hippocampal slices from 1-month-old presymptomatic and 6-month-old epileptic TKO mice and age-matched controls. We found a strong imbalance between basal glutamatergic and γ-aminobutyric acid (GABA)ergic transmission with increased evoked excitatory postsynaptic current and impaired evoked inhibitory postsynaptic current amplitude. This imbalance was accompanied by a parallel derangement of short-term plasticity paradigms, with enhanced facilitation of glutamatergic transmission in the presymptomatic phase and milder depression of inhibitory synapses in the symptomatic phase. Interestingly, a lower tonic GABA(A) current due to the impaired GABA release is responsible for the more depolarized resting potential found in TKO CA1 neurons, which makes them more susceptible to fire. All these changes preceded the appearance of epilepsy, indicating that the distinct changes in excitatory and inhibitory transmission due to the absence of Syns initiate the epileptogenic process.


Asunto(s)
Región CA1 Hipocampal/fisiología , Epilepsia/fisiopatología , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Animales , Epilepsia/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Teóricos , Técnicas de Placa-Clamp , Sinapsis/fisiología , Sinapsinas/deficiencia , Sinapsinas/genética
3.
Hum Mol Genet ; 18(1): 105-17, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829665

RESUMEN

The GDI1 gene, responsible in human for X-linked non-specific mental retardation, encodes alphaGDI, a regulatory protein common to all GTPases of the Rab family. Its alteration, leading to membrane accumulation of different Rab GTPases, may affect multiple steps in neuronal intracellular traffic. Using electron microscopy and electrophysiology, we now report that lack of alphaGDI impairs several steps in synaptic vesicle (SV) biogenesis and recycling in the hippocampus. Alteration of the SV reserve pool (RP) and a 50% reduction in the total number of SV in adult synapses may be dependent on a defective endosomal-dependent recycling and may lead to the observed alterations in short-term plasticity. As predicted by the synaptic characteristics of the mutant mice, the short-term memory deficit, observed when using fear-conditioning protocols with short intervals between trials, disappeared when the Gdi1 mutants were allowed to have longer intervals between sessions. Likewise, previously observed deficits in radial maze learning could be corrected by providing less challenging pre-training. This implies that an intact RP of SVs is necessary for memory processing under challenging conditions in mice. The possibility to correct the learning deficit in mice may have clinical implication for future studies in human.


Asunto(s)
Cognición , Inhibidores de Disociación de Guanina Nucleótido/genética , Aprendizaje , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Plasticidad Neuronal , Vesículas Sinápticas/fisiología , Animales , Femenino , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Hipocampo/metabolismo , Masculino , Memoria , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Discapacidad Intelectual Ligada al Cromosoma X/psicología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinapsis/genética , Sinapsis/metabolismo , Vesículas Sinápticas/genética
4.
J Neural Eng ; 17(3): 036033, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32480394

RESUMEN

OBJECTIVE: In this paper, we report on the development of an easy-to-fabricate three-dimensional Micro-Electrode Array (3D-MEA) specifically designed for brain-on-a-dish applications. APPROACH: The proposed device consists of pillar-shaped gold microelectrodes realized by electroplating directly on top of a standard MEA, making this approach highly versatile and convenient for batch fabrication. Moreover, with this simple technique, it is possible to obtain electrodes with a height of more than 100 µm onto different kind of substrates, ranging from glass to flexible plastic ones. MAIN RESULTS: This novel 3D-MEA structure has been validated with acute brain slices, successfully recording both epileptiform-like discharges (upon the administration of 4-AP), and electrically-evoked neuronal activity. The preliminary validation showed a substantial improvement in the signals amplitude with respect to both commercial and custom planar electrodes thanks to a better coupling offered by the peculiar shape of the three-dimensional electrodes. SIGNIFICANCE: Beside the versatility of the fabrication approach, which allows to obtain 3D MEA devices onto both rigid and flexible substrates, the reported validation showed how the pillar approach can outperform standard planar MEA recordings in terms of signal amplitude. Moreover, thanks to the possibility of obtaining multi-level 3D structures within the same device, the proposed fabrication technique offers an interesting and flexible approach for the development of a new family of electrophysiological tools for 3D in vitro electrophysiology, in particular for acute brain slices and 3D neuronal cultures for brain-on-a-dish applications.


Asunto(s)
Encéfalo , Neuronas , Fenómenos Electrofisiológicos , Microelectrodos
5.
Oncotarget ; 8(52): 90061-90076, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29163811

RESUMEN

Synapsins are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. SYN1/2 genes are major epilepsy susceptibility genes in humans. Consistently, synapsin I/II/III triple knockout (TKO) mice are epileptic and exhibit severe impairments in phasic and tonic GABAergic inhibition that precede the appearance of the epileptic phenotype. These changes are associated with an increased strength of excitatory transmission that has never been mechanistically investigated. Here, we observed that an identical effect in excitatory transmission could be induced in wild-type (WT) Schaffer collateral-CA1 pyramidal cell synapses by blockade of GABAB receptors (GABABRs). The same treatment was virtually ineffective in TKO slices, suggesting that the increased strength of the excitatory transmission results from an impairment of GABAB presynaptic inhibition. Exogenous stimulation of GABABRs in excitatory autaptic neurons, where GABA spillover is negligible, demonstrated that GABABRs were effective in inhibiting excitatory transmission in both WT and TKO neurons. These results demonstrate that the decreased GABA release and spillover, previously observed in TKO hippocampal slices, removes the tonic brake of presynaptic GABABRs on glutamate transmission, making the excitation/inhibition imbalance stronger.

6.
J Clin Invest ; 124(4): 1468-82, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24614104

RESUMEN

The recent identification of multiple dominant mutations in the gene encoding ß-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of ß-catenin function in cognitive impairment. In humans, ß-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo ß-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with ß-catenin mutations enabled us to investigate the consequences of ß-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of ß-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in ß-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults.


Asunto(s)
Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Mutación , beta Catenina/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Encéfalo/patología , Cadherinas/química , Preescolar , Anomalías Craneofaciales/patología , ADN/genética , Modelos Animales de Enfermedad , Femenino , Genes Dominantes , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Mutantes , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Fenotipo , Homología de Secuencia de Aminoácido , Síndrome , Adulto Joven , beta Catenina/química , beta Catenina/metabolismo
7.
Nat Neurosci ; 16(2): 227-34, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23313909

RESUMEN

In the absence of external stimuli, the mammalian neocortex shows intrinsic network oscillations. These dynamics are characterized by translaminar assemblies of neurons whose activity synchronizes rhythmically in space and time. How different cortical layers influence the formation of these spontaneous cellular assemblies is poorly understood. We found that excitatory neurons in supragranular and infragranular layers have distinct roles in the regulation of intrinsic low-frequency oscillations in mice in vivo. Optogenetic activation of infragranular neurons generated network activity that resembled spontaneous events, whereas photoinhibition of these same neurons substantially attenuated slow ongoing dynamics. In contrast, light activation and inhibition of supragranular cells had modest effects on spontaneous slow activity. This study represents, to the best of our knowledge, the first causal demonstration that excitatory circuits located in distinct cortical layers differentially control spontaneous low-frequency dynamics.


Asunto(s)
Modelos Neurológicos , Neocórtex/citología , Neocórtex/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Channelrhodopsins , Estimulación Eléctrica , Electroencefalografía , Electroporación , Femenino , Técnicas In Vitro , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dinámicas no Lineales , Técnicas de Placa-Clamp , Fosfopiruvato Hidratasa/metabolismo , Estimulación Luminosa , Embarazo , Proteínas/genética , ARN no Traducido , Proteínas Plasmáticas de Unión al Retinol/genética
8.
PLoS One ; 5(1): e8566, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-20052403

RESUMEN

BACKGROUND: Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release. METHODOLOGY/FINDINGS: Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine) and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated), and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486). On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats). Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability. CONCLUSIONS/SIGNIFICANCE: Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress, shown here for the first time, could be related to the therapeutic action of these drugs.


Asunto(s)
Antidepresivos/farmacología , Lóbulo Frontal/metabolismo , Ácido Glutámico/metabolismo , Estrés Psicológico/tratamiento farmacológico , Animales , Antidepresivos/uso terapéutico , Corticosterona/metabolismo , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/fisiopatología , Ratas , Receptores de Glucocorticoides/metabolismo , Proteínas SNARE/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA