Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Magn Reson Chem ; 62(5): 378-385, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37994198

RESUMEN

Efficient and robust analytical methods are needed to improve the identification and subsequent regulation of new psychoactive substances (NPS). NMR spectroscopy is a unique method able to determine the structure of small molecules such as NPS even in mixtures. However, high-field NMR analysis is associated with expensive purchase and maintenance costs. For more than a decade, compact NMR spectrometers have changed this paradigm. It was recently shown that a dedicated analytical workflow combining compact NMR and databases could identify the molecular structure of NPS, in spite of the lower spectral dispersion and sensitivity of compact spectrometers. This approach relies on 1H-13C HSQC to both recognize NPS and elucidate the structure of unknown substances. Still, its performance is limited by the need to compromise between resolution and experiment time. Here, we show that this strategy can be significantly improved by implementing non-uniform sampling (NUS) to improve spectral resolution in the 13C dimension of HSQC at no cost in terms of experiment time. Gains in the range of 3 to 4 in resolution are achieved for pure NPS and for a mixture. Finally, 2D HSQC with NUS was applied to improve the identification of NPS with the assistance of databases. The resulting method appears as a useful tool for the characterization of NPS in mixtures, which is essential for forensic laboratories.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos
2.
Chemphyschem ; 21(20): 2311-2319, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32955173

RESUMEN

Emerging low cost, compact NMR spectrometers that can be connected in-line to a flow reactor are suited to study reaction mixtures. The main limitation of such spectrometers arises from their lower magnetic field inducing a reduced sensitivity and a weaker spectral resolution. For enhancing the spectral resolution, the merging of Pure-Shift methods recognized for line narrowing with solvent elimination schemes was implemented in the context of mixtures containing protonated solvents. One more step was achieved to further enhance the resolution power on compact systems, thanks to multiple elimination schemes prior to Pure-Shift pulse sequence elements. For the first time, we were able to remove up to 6 protonated solvent signals simultaneously by dividing their intensity by 500 to 1700 with a concomitant spectral resolution enhancement for signals of interest from 9 to 12 as compared to the standard 1D 1 H. Then, the potential of this new approach was shown on the flow synthesis of a complex benzoxanthenone structure.

3.
Chemistry ; 25(53): 12405-12411, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31276256

RESUMEN

The reactivity and selectivity of non-heme FeII complexes as oxidation catalysts can be substantially modified by alteration of the ligand backbone or introduction of various substituents. In comparison with the hexadentate ligand N,N,N',N'-tetrakis(pyridin-2-ylmethyl)ethane-1,2-diamine (TPEN), N,N'-bis[1-(pyridin-2-yl)ethyl]-N,N'-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (2Me L6 2 ) has a methyl group on two of the four picolyl positions. FeII complexation by 2Me L6 2 yields two diastereomeric complexes with very similar structures, which only differ in the axial/equatorial positions occupied by the methylated pyridyl groups. In solution, these two isomers exhibit different magnetic behaviors. Whereas one isomer exhibits temperature-dependent spin-state conversion between the S=0 and S=2 states, the other is more reluctant towards this spin-state equilibrium and is essentially diamagnetic at room temperature. Their catalytic properties for the oxidation of anisole by H2 O2 are very different and correlate with their magnetic properties, which reflect their lability/inertness. These different properties most likely depend on the different steric constraints of the methylated pyridyl groups in the two complexes.

4.
Chemphyschem ; 20(5): 736-744, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30676676

RESUMEN

Benchtop NMR spectrometers experience a great success for a wide range of applications. However, their performance is highly limited by peak overlaps. Emerging "pure-shift NMR" (PS NMR) methods have been intensively used at high field to enhance the resolution by homodecoupling strategies. Here, different PS methods have been implemented on a compact NMR spectrometer operating at 43 MHz. Among the PS methods, the recent PSYCHE scheme appears more sensitive than Zangger-Sterk (ZS) experiments and offers a substantial resolution improvement as compared to 1D 1 H. On the other hand, despite their slightly lower sensitivity, ZS methods are more efficient to reduce broad signals and are more immune to strong couplings. Finally, the classical J-resolved pulse sequence is more efficient to reduce larger signals for bigger-sized molecules. The three approaches appear relevant for benchtop NMR and their combination forms an efficient toolbox to analyze a great diversity of samples.

5.
Magn Reson Chem ; 57(10): 794-804, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30586475

RESUMEN

This mini-review highlights the potential of benchtop nuclear magnetic resonance (NMR) for the monitoring of bioprocesses. It describes recent perspectives opened by the reduced size of devices in relaxometry, magnetic resonance imaging and NMR spectroscopy. In particular, the recent emergence of the benchtop NMR spectroscopy gives access to many applications thanks to the implementation of advanced experiments.


Benchtop NMR devices are transportable, convenient, and affordable, unlike high-field devices based on superconducting magnets. Such devices have opened numerous applications across a broad variety of scientific areas. This minireview focuses on the usefulness of benchtop nuclear magnetic resonance (NMR) for the monitoring of bioprocesses, highlighting new perspectives opened by the reduced size of devices in relaxometry, magnetic resonance imaging, and NMR spectroscopy. Using benchtop NMR in bioprocesses is not exempt of limitations-especially the loss of sensitivity and resolution arising from the use of a low magnetic field-and which are even further exacerbated by the sample complexity. Still, several studies have shown the efficiency of benchtop NMR in being a noninvasive probe to monitor the evolution of biological samples. If benchtop relaxometry and imaging have been developed for decades and have shown their capacity in monitoring such processes, the more recent emergence of the benchtop NMR spectroscopy gives a breath of fresh air for many applications and benefits from recent research led by spectroscopy specialists, which are adapted on these new devices, from nonconventional pulse sequences to advanced data processing. There is no doubt that these recent devices are powerful tools that will open numerous perspectives for the real-time study of bioprocesses in the coming years.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Adenosina Trifosfato/análisis , Animales , Reactores Biológicos , Humanos , Lípidos/análisis , Imagen por Resonancia Magnética/métodos , Metaboloma , Microalgas/química
6.
Anal Chem ; 90(3): 1845-1851, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29303255

RESUMEN

The targeted analysis of metabolites in complex mixtures is a challenging issue. NMR is one of the major tools in this field, but there is a strong need for more sensitive, better-resolved, and faster quantitative methods. In this framework, we introduce the concept of FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced (FAQUIRE) NMR to push forward the limits of metabolite NMR analysis. 2D 1H, 13C 2D quantitative maps are promising alternatives for enhancing the spectral resolution but are highly time-consuming because of (i) the intrinsic nature of 2D, (ii) the longer recycling times required for quantitative conditions, and (iii) the higher number of scans needed to reduce the level of detection/quantification to access low concentrated metabolites. To reach this aim, speeding up the recently developed QUantItative Perfected and pUre shifted HSQC (QUIPU HSQC) is an interesting attempt to develop the FAQUIRE concept. Thanks to the combination of spectral aliasing, nonuniform sampling, and variable repetition time, the acquisition time of 2D quantitative maps is reduced by a factor 6 to 9, while conserving a high spectral resolution thanks to a pure shift approach. The analytical potential of the new Quick QUIPU HSQC (Q QUIPU HSQC) is evaluated on a model metabolite sample, and its potential is shown on breast-cell extracts embedding metabolites at millimolar to submillimolar concentrations.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Aminoácidos/análisis , Neoplasias de la Mama/química , Isótopos de Carbono/análisis , Línea Celular Tumoral , Colina/análisis , Femenino , Humanos , Hidrógeno/análisis , Inositol/análisis , Ácido Láctico/análisis , Espectroscopía de Resonancia Magnética/economía , Factores de Tiempo
7.
Chemistry ; 24(19): 4790-4793, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29341287

RESUMEN

Six-membered ring fused furans containing a tetrasubstituted tertiary carbon were prepared in an unprecedented one-pot BODIPY-catalyzed domino photooxygenation/reduction process. A series of functionalized furans was synthesized from readily available 2-alkenylphenols and mechanistic studies were performed to account for the domino photosensitized oxygenation.

8.
Magn Reson Chem ; 55(10): 883-892, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28409854

RESUMEN

Nuclear magnetic resonance (NMR) is one of the most widely used analytical techniques in numerous domains where molecules are objects of investigation. However, major limitations of multidimensional NMR experiments come from their low sensitivity and from the long times needed for their acquisition. In order to overcome such limitations, fast repetition NMR techniques allowed for the reduction of 2D experimental time and for the conversion of the gained time into a higher number of scans leading to a better sensitivity. Thus, fast repetition 2D heteronuclear NMR techniques have allowed new advances in NMR, especially to access infomation on low abundant nuclei, to enhance the detection of low concentrated compounds and to probe weak interactions like hydrogen bonds at natural abundance. Copyright © 2017 John Wiley & Sons, Ltd.

9.
Beilstein J Org Chem ; 13: 755-761, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28503210

RESUMEN

An efficient synthetic pathway leading to two carbonated analogues of ribavirin is described. The key-steps in the synthesis of these ribosyltriazoles bearing a quaternary carbon atom in the 2'-position are an indium-mediated alkynylation and a 1,3-dipolar cyclization.

10.
Chemphyschem ; 17(7): 1034-45, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26845749

RESUMEN

The presence of water has been shown to deeply impact the stability and geometry of Zn complexes in solution. Evidence for tetra- and penta-coordinated species in a pyridylmethylamine-Zn(II) model complex is presented. Novel (1) H NMR tools such as T1 -filtered selective exchange spectroscopy and pure shifted gradient-encoded selective refocusing as well as classical 2D ((1) H-(1) H) exchange spectroscopy, diffusion-ordered spectroscopy and T1 ((1) H) measurements, in combination with density functional theory methods allow the full conformational dynamics of a pyridylmethylamine-Zn(II) complex to be revealed. Four conformers and two families of complexes depending on the hydration states are elucidated.

11.
Phys Chem Chem Phys ; 18(33): 22827-39, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27188323

RESUMEN

A detailed analysis of NMR spectra acquired based on spatial frequency encoding is presented. A theoretical model to simulate gradient encoded pulses is developed in order to describe the spatial properties of the NMR signals that are locally created throughout the sample. The key features that affect the efficiency of the slice selection process during excitation as well as refocusing pulses are investigated on a model ABX spin system, both theoretically and experimentally. It is shown that the sensitivity and resolution of the pure shift and J-edited experiments based on a spatial frequency encoding can be optimized to a point where high-resolution techniques based on a spatial frequency encoding approach show optimal performance compared to other methods.

12.
Phys Chem Chem Phys ; 18(45): 31338, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27819711

RESUMEN

Correction for 'Achieving high resolution and optimizing sensitivity in spatial frequency encoding NMR spectroscopy: from theory to practice' by Bertrand Plainchont et al., Phys. Chem. Chem. Phys., 2016, 18, 22827-22839.

13.
Chemistry ; 21(25): 9044-7, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25941095

RESUMEN

A new correlation experiment cited as "push-G-SERF" is reported. In the resulting phased 2D spectrum, the chemical shift information is selected along the direct dimension, whereas scalar couplings involving a selected proton nucleus are edited in the indirect domain. The robustness of this pulse sequence is demonstrated on compounds with increasing structural and spectral complexity, using state-of-the-art spectrometers. It allows for full resolution of both dimensions of the spectrum, yielding a straightforward assignment and measurement of the coupling network around a given proton in the molecule. This experiment is intended for chemists who want to address efficiently the structural analysis of molecules with an overcrowded spectrum.

14.
Angew Chem Int Ed Engl ; 54(37): 10807-10, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26212593

RESUMEN

Cyclic homologated amino acids are important building blocks for the construction of helical foldamers. N-aminoazetidine-2-carboxylic acid (AAzC), an aza analogue of trans-2-aminocyclobutanecarboxylic acid (tACBC), displays a strong hydrazino turn conformational feature, which is proposed to act as an 8-helix primer. tACBC oligomers bearing a single N-terminal AAzC residue were studied to evaluate the ability of AAzC to induce and support an 8-helix along the oligopeptide length. While tACBC homooligomers assume a dominant 12-helix conformation, the aza-primed oligomers preferentially adopt a stabilized 8-helix conformation for an oligomer length up to 6 residues. The (formal) single-atom exchange at the N terminus of a tACBC oligomer thus contributes to the sustainability of the 8-helix, which resists the switch to a 12-helix. This effect illustrates atomic-level programmable design for fine tuning of peptide foldamer architectures.


Asunto(s)
Péptidos/química , Dicroismo Circular , Conformación Proteica , Espectrofotometría Infrarroja
15.
Magn Reson Chem ; 52(6): 273-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24652706

RESUMEN

Pyridylmethylamines or pma are versatile platforms for different catalytic transformations. Five pma-ligands and their respective Pd complexes have been studied by liquid state NMR. By comparing (1)H, (13)C and (15)N chemical shifts for each pma/pma-Pd couple, a general trend for the metallacycle atoms concerns variations of the electronic distribution at the pendant arm, especially at the nitrogen atom of the ligand. Moreover, the increase of the chemical shift of the pendant arm nitrogen atom from primary to tertiary amine is also related to the increase of crowding within the complex. This statement is in good agreement with X-ray data collected for several complexes. Catalytic results for the Suzuki-Miyaura reaction involving the pma-Pd complexes showed within this series that a sterically crowded and electron-rich ligand in the metallacycle was essential to reach the coupling product with a good selectivity. In this context, NMR study of chemical shifts of all active nuclei especially in the metallacycle could give a trend of reactivity in the studied family of pma-Pd complexes.

16.
Anal Methods ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028155

RESUMEN

This study investigates the potential and complementarity of high-throughput multipulse and multidimensional NMR methods for metabolomics. Through a chemical ecology case study, three methods are investigated, offering a continuum of methods with complementary features in terms of resolution, sensitivity and experiment time. Ultrafast 2D COSY, adiabatic INEPT and SYMAPS HSQC are shown to provide a very good classification ability, comparable to the reference 1D 1H NMR method. Moreover, a detailed analysis of discriminant buckets upon supervised statistical analysis shows that all methods are highly complementary, since they are able to highlight discriminant signals that could not be detected by 1D 1H NMR. In particular, fast 2D methods appear very efficient to discriminate signals located in highly crowded regions of the 1H spectrum. Overall, the combination of these recent methods within a single NMR metabolomics workflow allows to maximize the accessible metabolic information, and also raises exciting challenges in terms of NMR data analysis for chemical ecology.

17.
J Org Chem ; 78(15): 7648-57, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23845048

RESUMEN

Tetra-O-acylated sulfolipids are metabolites found in the cell wall of Mycobacterium tuberculosis, the causative agent of tuberculosis. Their role in pathogenesis remains, however, undefined. Here we describe a novel access to model tetra-O-acylated trehalose sulfate derivatives having simple acyl chains. The trehalose core was regioselectively protected using a tandem procedure with catalytic iron(III) chloride hexahydrate and further desymmetrized. Model chiral fatty acids, prepared by a zinc-mediated cross-coupling, were incorporated into the trehalose core. The enantiomeric excess of the chiral fatty acids has been measured by natural abundance deuterium (NAD) 2D-NMR spectroscopy in a polypeptide based chiral liquid crystal. The synthetic approach established for the model compounds can easily be developed for the preparation of other analogues and natural sulfolipids.


Asunto(s)
Deuterio/química , Lípidos/síntesis química , Mycobacterium tuberculosis/química , Anisotropía , Lípidos/química , Espectroscopía de Resonancia Magnética , Conformación Molecular
18.
J Org Chem ; 78(12): 6031-9, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23692347

RESUMEN

Four model compounds and four dipeptides containing N-aminoazetidinecarboxylic acid (AAzC) and a particular stereoisomer of 2-aminocyclobutanecarboxylic acid (ACBC) were studied to establish their solution state conformational preferences, particularly regarding the ability of AAzC to induce a three-center hydrogen-bonded folding feature known as a "hydrazino turn". On the basis of IR and NMR experiments, supported by molecular modeling, the AAzC residue adopted a trans configuration amenable to the formation of a cyclic eight-membered hydrogen bond conformation in solution, in all cases studied. The implication of the heterocyclic nitrogen atom of AAzC in the trans-like structure was demonstrated via a refined (1)H-(15)N HMBC experiment giving exploitable data at natural (15)N isotopic abundance, providing unprecedented evidence for the solution state hydrazino turn conformation. The predominance of this secondary structural feature depended on the configuration of the neighboring ACBC residue in the dipeptides: while the trans-ACBC derivatives prefer the hydrazino turn, the cis-ACBC derivatives may also populate low-energy 10-membered hydrogen-bonded ring structures. X-ray diffraction analysis of three compounds confirmed the presence of a solid state hydrazino turn in two cases, with geometries similar to those deduced from the solution state studies, but in the third compound, no intramolecular hydrogen-bonding feature was in evidence.


Asunto(s)
Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/química , Ácidos Carboxílicos/química , Ciclobutanos/química , Dipéptidos/síntesis química , Hidrazinas/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Químicos , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Soluciones , Estereoisomerismo , Termodinámica
19.
Inorg Chem ; 52(2): 691-700, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23301704

RESUMEN

We report the synthesis, characterization, and solution chemistry of a series of new Fe(II) complexes based on the tetradentate ligand N-methyl-N,N'-bis(2-pyridyl-methyl)-1,2-diaminoethane or the pentadentate ones N,N',N'-tris(2-pyridyl-methyl)-1,2-diaminoethane and N,N',N'-tris(2-pyridyl-methyl)-1,3-diaminopropane, modified by propynyl or methoxyphenyltriazolyl groups on the amino functions. Six of these complexes are characterized by X-ray crystallography. In particular, two of them exhibit an hexadentate coordination environment around Fe(II) with two amino, three pyridyl, and one triazolyl groups. UV-visible and cyclic voltammetry experiments of acetonitrile solutions of the complexes allow to deduce accurately the structure of all Fe(II) species in equilibrium. The stability of the complexes could be ranked as follows: [L(5)Fe(II)-py](2+) > [L(5)Fe(II)-Cl](+) > [L(5)Fe(II)-triazolyl](2+) > [L(5)Fe(II)-(NCMe)](2+), where L(5) designates a pentadentate coordination sphere composed of the two amines of ethanediamine and three pyridines. For complexes based on propanediamine, the hierarchy determined is [L(5)Fe(II)-Cl](+) > [L(5)Fe(II)(OTf)](+) > [L(5)Fe(II)-(NCMe)](2+), and no ligand exchange could be evidenced for [L(5)Fe(II)-triazolyl](2+). Reactivity of the [L(5)Fe(II)-triazolyl](2+) complexes with hydrogen peroxide and PhIO is similar to the one of the parent complexes that lack this peculiar group, that is, generation of Fe(III)(OOH) and Fe(IV)(O), respectively. Accordingly, the ability of these complexes at catalyzing the oxidation of small organic molecules by these oxidants follows the tendencies of their previously reported counterparts. Noteworthy is the remarkable cyclooctene epoxidation activity by these complexes in the presence of PhIO.


Asunto(s)
Complejos de Coordinación/química , Hierro/química , Compuestos de Nitrógeno/química , Piridinas/química , Triazoles/química , Catálisis , Ligandos , Estructura Molecular
20.
Org Biomol Chem ; 11(43): 7611-5, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24105064

RESUMEN

Structural investigations of peptides using NMR spectroscopy rarely include the detection of N-H···O=C and N-H···N hydrogen bonds, because the relevant heteronuclei have a low natural abundance while the small trans hydrogen bond scalar couplings reduce the sensitivity. Fast repetition NMR techniques combined with state of the art spectrometer specifications allowed the enhancement of the sensitivity for detection of hydrogen bonds at natural isotopic abundance.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Enlace de Hidrógeno , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA