RESUMEN
Connexin (Cx) gap junction channels comprise two hemichannels in neighboring cells, and their permeability is well-described, but permeabilities of the single Cx hemichannel remain largely unresolved. Moreover, determination of isoform-specific Cx hemichannel permeability is challenging because of concurrent expression of other channels with similar permeability profiles and inhibitor sensitivities. The mammalian Cx hemichannels Cx30 and Cx43 are gated by extracellular divalent cations, removal of which promotes fluorescent dye uptake in both channels but atomic ion conductance only through Cx30. To determine the molecular determinants of this difference, here we employed chimeras and mutagenesis of predicted pore-lining residues in Cx43. We expressed the mutated channels in Xenopus laevis oocytes to avoid background activity of alternative channels. Oocytes expressing a Cx43 hemichannel chimera containing the N terminus or the first extracellular loop from Cx30 displayed ethidium uptake and, unlike WT Cx43, ion conduction, an observation further supported by molecular dynamics simulations. Additional C-terminal truncation of the chimeric Cx43 hemichannel elicited an even greater ion conductance with a magnitude closer to that of Cx30. The inhibitory profile for the connexin hemichannels depended on the permeant, with conventional connexin hemichannel inhibitors having a higher potency toward the ion conductance pathway than toward fluorescent dye uptake. Our results demonstrate a permeant-dependent, isoform-specific inhibition of connexin hemichannels. They further reveal that the outer segments of the pore-lining region, including the N terminus and the first extracellular loop, together with the C terminus preclude ion conductance of the open Cx43 hemichannel.
Asunto(s)
Conexina 43/química , Conexina 43/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Fenómenos Electrofisiológicos , Simulación de Dinámica Molecular , Permeabilidad , Porosidad , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Especificidad por SustratoRESUMEN
Autophagy is an evolutionarily conserved mechanism of cellular self-digestion in which proteins and organelles are degraded through delivery to lysosomes. Defects in this process are implicated in numerous human diseases including cancer. To further elucidate regulatory mechanisms of autophagy, we performed a functional screen in search of microRNAs (miRNAs), which regulate the autophagic flux in breast cancer cells. In this study, we identified the tumour suppressive miRNA, miR-101, as a potent inhibitor of basal, etoposide- and rapamycin-induced autophagy. Through transcriptome profiling, we identified three novel miR-101 targets, STMN1, RAB5A and ATG4D. siRNA-mediated depletion of these genes phenocopied the effect of miR-101 overexpression, demonstrating their importance in autophagy regulation. Importantly, overexpression of STMN1 could partially rescue cells from miR-101-mediated inhibition of autophagy, indicating a functional importance for this target. Finally, we show that miR-101-mediated inhibition of autophagy can sensitize breast cancer cells to 4-hydroxytamoxifen (4-OHT)-mediated cell death. Collectively, these data establish a novel link between two highly important and rapidly growing research fields and present a new role for miR-101 as a key regulator of autophagy.
Asunto(s)
Autofagia , MicroARNs/genética , MicroARNs/metabolismo , Estatmina/metabolismo , Proteínas Relacionadas con la Autofagia , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Etopósido/farmacología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , ARN Interferente Pequeño , Sirolimus/farmacología , Estatmina/biosíntesis , Estatmina/genética , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismoRESUMEN
Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection.
Asunto(s)
Autofagia , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Pruebas Genéticas , Fagosomas/metabolismo , Proteínas/metabolismo , Proteómica , Aminoácidos/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Antivirales/farmacología , Neoplasias de la Mama/patología , Electroforesis en Gel de Poliacrilamida , Femenino , Proteínas Fluorescentes Verdes/inmunología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Inmunosupresores/farmacología , Marcaje Isotópico , Lisosomas/metabolismo , Macrólidos/farmacología , Fagosomas/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Inanición , Células Tumorales CultivadasRESUMEN
The capacity of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) to trigger apoptosis preferentially in cancer cells, although sparing normal cells, has motivated clinical development of TRAIL receptor agonists as anti-cancer therapeutics. The molecular mechanisms responsible for the differential TRAIL sensitivity of normal and cancer cells are, however, poorly understood. Here, we show a novel signalling pathway that activates cytoprotective autophagy in untransformed human epithelial cells treated with TRAIL. TRAIL-induced autophagy is mediated by the AMP-activated protein kinase (AMPK) that inhibits mammalian target of rapamycin complex 1, a potent inhibitor of autophagy. Interestingly, the TRAIL-induced AMPK activation is refractory to the depletion of the two known AMPK-activating kinases, LKB1 and Ca(2+)/calmodulin-dependent kinase kinase-beta, but depends on transforming growth factor-beta-activating kinase 1 (TAK1) and TAK1-binding subunit 2. As TAK1 and AMPK are ubiquitously expressed kinases activated by numerous cytokines and developmental cues, these data are most likely to have broad implications for our understanding of cellular control of energy homoeostasis as well as the resistance of untransformed cells against TRAIL-induced apoptosis.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Citoprotección/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Mama/citología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Activación Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Humanos , Interleucina-1beta/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Modelos Biológicos , Complejos Multiproteicos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas , Epitelio Pigmentado de la Retina/citología , Serina-Treonina Quinasas TOR , Factores de Transcripción/antagonistas & inhibidoresRESUMEN
Macroautophagy (hereafter autophagy) is a lysosomal catabolic pathway that controls cellular homeostasis and survival. It has recently emerged as an attractive target for the treatment of a variety of degenerative diseases and cancer. The targeting of autophagy has, however, been hampered by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes. Notably, the autophagy inhibitory effects of all three compounds were independent of their established kinase targets, i.e. ataxia telangiectasia mutated for KU55933, protein kinase C for Gö6976, and Janus kinase 3 for Jak3 inhibitor VI. Instead, we identified phosphatidylinositol 3-kinase (PtdIns3K) as a direct target of KU55933 and Gö6976. Importantly, and in contrast to the currently available inhibitors of autophagosome formation (e.g. 3-methyladenine), none of the three compounds inhibited the cell survival promoting class I phosphoinositide 3-kinase-Akt signaling at the concentrations required for effective autophagy inhibition. Accordingly, they proved to be valuable tools for investigations of autophagy-associated cell death and survival. Employing KU55399, we demonstrated that autophagy protects amino acid-starved cells against both apoptosis and necroptosis. Taken together, our data introduce new possibilities for the experimental study of autophagy and can form a basis for the development of clinically relevant autophagy inhibitors.
Asunto(s)
Autofagia/efectos de los fármacos , Carbazoles/farmacología , Inhibidores Enzimáticos/farmacología , Morfolinas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Pironas/farmacología , Autofagia/genética , Línea Celular Tumoral , Femenino , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genéticaRESUMEN
The epidermis, outermost layer of the skin, forms a barrier and is involved in innate and adaptive immunity in an organism. Keratinocytes participate in all these three protective processes. However, a regulator of keratinocyte protective responses against external dangers and stresses remains elusive. We found that upregulation of the orphan gene 2610528A11Rik was a common factor in the skin of mice with several types of inflammation. In the human epidermis, peptide expression of G protein-coupled receptor 15 ligand (GPR15L), encoded by the human ortholog C10orf99, was highly induced in the lesional skin of patients with atopic dermatitis or psoriasis. C10orf99 gene transfection into normal human epidermal keratinocytes (NHEKs) induced the expression of inflammatory mediators and reduced the expression of barrier-related genes. Gene ontology analyses showed its association with translation, mitogen-activated protein kinase (MAPK), mitochondria, and lipid metabolism. Treatment with GPR15L reduced the expression levels of filaggrin and loricrin in human keratinocyte 3D cultures. Instead, their expression levels in mouse primary cultured keratinocytes did not show significant differences between the wild-type and 2610528A11Rik deficient keratinocytes. Lipopolysaccharide-induced expression of Il1b and Il6 was less in 2610528A11Rik deficient mouse keratinocytes than in wild-type, and imiquimod-induced psoriatic dermatitis was blunted in 2610528A11Rik deficient mice. Furthermore, repetitive subcutaneous injection of GPR15L in mouse ears induced skin inflammation in a dose-dependent manner. These results suggest that C10orf99/GPR15L is a primary inducible regulator that reduces the barrier formation and induces the inflammatory response of keratinocytes.
Asunto(s)
Dermatitis Atópica , Queratinocitos , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Unión al ADN/metabolismo , Dermatitis Atópica/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Queratinocitos/metabolismo , Ligandos , Ratones , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
Macroautophagy/autophagy is a central component of the cytoprotective cellular stress response. To enlighten stress-induced autophagy signaling, we screened a human kinome siRNA library for regulators of autophagic flux in MCF7 human breast carcinoma cells and identified the catalytic subunit of DNA-dependent protein kinase PRKDC/DNA-PKcs as a positive regulator of basal and DNA damage-induced autophagy. Analysis of autophagy-regulating signaling cascades placed PRKDC upstream of the AMP-dependent protein kinase (AMPK) complex and ULK1 kinase. In normal culture conditions, PRKDC interacted with the AMPK complex and phosphorylated its nucleotide-sensing γ1 subunit PRKAG1/AMPKγ1 at Ser192 and Thr284, both events being significantly reduced upon the activation of the AMPK complex. Alanine substitutions of PRKDC phosphorylation sites in PRKAG1 reduced AMPK complex activation without affecting its nucleotide sensing capacity. Instead, the disturbance of PRKDC-mediated phosphorylation of PRKAG1 inhibited the lysosomal localization of the AMPK complex and its starvation-induced association with STK11 (serine/threonine kinase 11). Taken together, our data suggest that PRKDC-mediated phosphorylation of PRKAG1 primes AMPK complex to the lysosomal activation by STK11 in cancer cells thereby linking DNA damage response to autophagy and cellular metabolism. Abbreviations: AXIN1: axin 1; 3-MA: 3-methyladenine; 5-FU: 5-fluorouracil; AA mutant: double alanine mutant (S192A, T284A) of PRKAG1; ACACA: acetyl-CoA carboxylase alpha; AICAR: 5-Aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; ATG: autophagy-related; ATM: ataxia telangiectasia mutated; ATR: ATM serine/threonine kinase; AV: autophagic vacuole; AVd: degradative autophagic vacuole; AVi: initial autophagic vacuole; BECN1: beclin 1; BSA: bovine serum albumin; CBS: cystathionine beta-synthase; CDK7: cyclin dependent kinase 7; CDKN1A: cyclin dependent kinase inhibitor 1A; EGFP: enhanced green fluorescent protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GST: glutathione S transferase; H2AX/H2AFX: H2A.X variant histone; HBSS: Hanks balanced salt solution; IP: immunopurification; IR: ionizing radiation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K9: mitogen-activated protein kinase kinase kinase 9; mRFP: monomeric red fluorescent protein; mCh: mCherry; MCM7: minichromosome maintenance complex component 7; MTORC1: mechanistic target of rapamycin kinase complex 1; NHEJ: non-homologous end joining; NRBP2: nuclear receptor binding protein 2; NTC: non-targeting control; NUAK1: NUAK family kinase 1; PBS: phosphate-buffered saline; PIK3AP1: phosphoinositide-3-kinase adaptor protein 1; PIK3CA: phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit alpha; PIKK: phosphatidylinositol 3-kinase-related kinase; PRKAA: protein kinase AMP-activated catalytic subunit alpha; PRKAB: protein kinase AMP-activated non-catalytic subunit beta; PRKAG: protein kinase AMP-activated non-catalytic subunit gamma; PRKDC: protein kinase, DNA-activated, catalytic subunit; RLuc: Renilla luciferase; RPS6KB1: ribosomal protein S6 kinase B1; SQSTM1: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TP53: tumor protein p53; TSKS: testis specific serine kinase substrate; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2; WT: wild type.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Proteína Quinasa Activada por ADN/metabolismo , Regulación Enzimológica de la Expresión Génica , Lisosomas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Sitios de Unión , Línea Celular Tumoral , Citosol/metabolismo , Daño del ADN , Humanos , Lisosomas/metabolismo , Células MCF-7 , Fagocitosis , Fosforilación , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genéticaRESUMEN
The apoptosome, a heptameric complex of Apaf-1, cytochrome c, and caspase-9, has been considered indispensable for the activation of caspase-9 during apoptosis. By using a large panel of genetically modified murine embryonic fibroblasts, we show here that, in response to tumor necrosis factor (TNF), caspase-8 cleaves and activates caspase-9 in an apoptosome-independent manner. Interestingly, caspase-8-cleaved caspase-9 induced lysosomal membrane permeabilization but failed to activate the effector caspases whereas apoptosome-dependent activation of caspase-9 could trigger both events. Consistent with the ability of TNF to activate the intrinsic apoptosis pathway and the caspase-9-dependent lysosomal cell death pathway in parallel, their individual inhibition conferred only a modest delay in TNF-induced cell death whereas simultaneous inhibition of both pathways was required to achieve protection comparable to that observed in caspase-9-deficient cells. Taken together, the findings indicate that caspase-9 plays a dual role in cell death signaling, as an activator of effector caspases and lysosomal membrane permeabilization.
Asunto(s)
Apoptosis/fisiología , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Caspasa 9/metabolismo , Citocromos c/metabolismo , Lisosomas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Factor Apoptótico 1 Activador de Proteasas/genética , Caspasa 8/genética , Caspasa 8/metabolismo , Caspasa 9/genética , Células Cultivadas , Cicloheximida/metabolismo , Citocromos c/genética , Activación Enzimática , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Inhibidores de la Síntesis de la Proteína/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
Acquired resistance to classic caspase-mediated apoptosis is a common problem for the treatment of human cancer. Here, we show that siramesine, a novel sigma-2 receptor ligand, effectively induces caspase-independent programmed cell death in immortalized and transformed cells of various origins. Siramesine-treated tumor cells displayed increased levels of reactive oxygen species, lysosomal membrane permeabilization, chromatin condensation, and shrinkage and detachment of cells. Lipid antioxidants (alpha-tocopherol and gamma-tocopherol), but not other tested antioxidants (butylated hydroxyanisol or N-acetyl cysteine), effectively inhibited siramesine-induced morphologic changes and cell death. Cathepsin B inhibitors (CA-074-Me and R-2525) conferred similar, but less pronounced protection, whereas ectopic expression of antiapoptotic protein Bcl-2, lack of wild-type p53 as well as pharmacologic inhibitors of caspases (zVAD-fmk, DEVD-CHO, and LEHD-CHO), calpains (PD150606), and serine proteases (N-tosyl-L-phenylalanine chloromethyl ketone and pefabloc) failed to protect cells against siramesine-induced death. Importantly, transformation of murine embryonic fibroblasts with activated c-src or v-Ha-ras oncogenes greatly sensitized them to siramesine-induced cytotoxicity. Furthermore, p.o. administration of well-tolerated doses of siramesine had a significant antitumorigenic effect in orthotopic breast cancer and s.c. fibrosarcoma models in mice. These results present siramesine as a promising new drug for the treatment of tumors resistant to traditional therapies.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Indoles/farmacología , Lisosomas/efectos de los fármacos , Receptores sigma/metabolismo , Compuestos de Espiro/farmacología , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Caspasas/metabolismo , Catepsinas/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Citocromos c/metabolismo , Femenino , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Humanos , Ligandos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Estrés Oxidativo/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by sphingomyelin accumulation and severely disturbed tissue homeostasis. Here, we report that sphingomyelin overload disturbs the maturation and closure of autophagic membranes. Niemann-Pick type A patient fibroblasts and SMPD1-depleted cancer cells accumulate elongated and unclosed autophagic membranes as well as abnormally swollen autophagosomes in the absence of normal autophagosomes and autolysosomes. The immature autophagic membranes are rich in WIPI2, ATG16L1 and MAP1LC3B but display reduced association with ATG9A. Contrary to its normal trafficking between plasma membrane, intracellular organelles and autophagic membranes, ATG9A concentrates in transferrin receptor-positive juxtanuclear recycling endosomes in SMPD1-deficient cells. Supporting a causative role for ATG9A mistrafficking in the autophagy defect observed in SMPD1-deficient cells, ectopic ATG9A effectively reverts this phenotype. Exogenous C12-sphingomyelin induces a similar juxtanuclear accumulation of ATG9A and subsequent defect in the maturation of autophagic membranes in healthy cells while the main sphingomyelin metabolite, ceramide, fails to revert the autophagy defective phenotype in SMPD1-deficient cells. Juxtanuclear accumulation of ATG9A and defective autophagy are also evident in tissues of smpd1-deficient mice with a subsequent inability to cope with kidney ischemia-reperfusion stress. These data reveal sphingomyelin as an important regulator of ATG9A trafficking and maturation of early autophagic membranes.
Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Proteínas de la Membrana/metabolismo , Esfingomielinas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Autofagosomas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Membrana Celular/metabolismo , Endosomas/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Células MCF-7 , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad de Niemann-Pick Tipo A/genética , Enfermedad de Niemann-Pick Tipo A/metabolismo , Enfermedad de Niemann-Pick Tipo A/patología , Transporte de Proteínas , ARN Interferente Pequeño/genética , Receptores de Transferrina/metabolismo , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielina Fosfodiesterasa/genéticaRESUMEN
Effective cell cycle completion requires both Myc and E2F activities. However, whether these two activities interact to regulate cell survival remains to be tested. Here we have analysed survival of inducible c-Myc-overexpressing cell lines derived from U2OS human osteosarcoma cells, which carry wild-type pRb and p53 and are deficient for p16 and ARF expression. Induced U2OS-Myc cells neither underwent apoptosis spontaneously nor upon reconstitution of the ARF-p53 axis and/or serum-starvation. However, they died massively when concomitantly exposed to inhibitors of E2F activity, including a constitutively active pRb (RbDeltacdk) mutant, p16, a stable p27 (p27T187A) mutant, a dominant-negative (dn) CDK2, or dnDP-1. Similar apoptotic effect was observed upon down-modulation of endogenous E2Fs through overexpression of E2F binding site oligonucleotides in U2OS-Myc cells, upon expression of RbDeltacdk or dnDP-1 in the Myc-amplified HL-60 (ARF-; p53-) human leukemia cells, and upon co-transfection of Myc and RbDeltacdk in SAOS-2 (ARF+; p53-) human osteosarcoma cells but not in human primary fibroblasts. Consistent with these results, a dnp53 mutant did not abrogate the Myc-induced apoptotic phenotype, which instead strictly depended on caspase-3-like proteases and on Myc transcriptional activity. Our data indicate that in contrast to normal cells, Myc-overexpressing human cancer cells need E2F activity for their survival, regardless of their ARF and p53 status, a notion that may have important implications for antineoplastic treatment strategies.
Asunto(s)
Apoptosis/fisiología , Neoplasias Óseas/metabolismo , Proteínas de Unión al ADN , Oligonucleótidos/farmacología , Osteosarcoma/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Western Blotting , Neoplasias Óseas/patología , Caspasa 3 , Inhibidores de Caspasas , Caspasas/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Regulación hacia Abajo , Factores de Transcripción E2F , Inhibidores Enzimáticos/farmacología , Genes Dominantes/fisiología , Vectores Genéticos/genética , Humanos , Immunoblotting , Osteosarcoma/patología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína de Retinoblastoma/farmacología , Factores de Tiempo , Factores de Transcripción/genética , Transfección , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia ArribaRESUMEN
Lysosomal membrane permeabilization (LMP) contributes to tissue involution, degenerative diseases, and cancer therapy. Its investigation has, however, been hindered by the lack of sensitive methods. Here, we characterize and validate the detection of galectin puncta at leaky lysosomes as a highly sensitive and easily manageable assay for LMP. LGALS1/galectin-1 and LGALS3/galectin-3 are best suited for this purpose due to their widespread expression, rapid translocation to leaky lysosomes and availability of high-affinity antibodies. Galectin staining marks individual leaky lysosomes early during lysosomal cell death and is useful when defining whether LMP is a primary or secondary cause of cell death. This sensitive method also reveals that cells can survive limited LMP and confirms a rapid formation of autophagic structures at the site of galectin puncta. Importantly, galectin staining detects individual leaky lysosomes also in paraffin-embedded tissues allowing us to demonstrate LMP in tumor xenografts in mice treated with cationic amphiphilic drugs and to identify a subpopulation of lysosomes that initiates LMP in involuting mouse mammary gland. The use of ectopic fluorescent galectins renders the galectin puncta assay suitable for automated screening and visualization of LMP in live cells and animals. Thus, the lysosomal galectin puncta assay opens up new possibilities to study LMP in cell death and its role in other cellular processes such as autophagy, senescence, aging, and inflammation.
Asunto(s)
Autofagia , Permeabilidad de la Membrana Celular , Galectinas/química , Lisosomas/metabolismo , Animales , Apoptosis , Proteínas Sanguíneas , Mama/patología , Caenorhabditis elegans/fisiología , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Femenino , Galectina 1/metabolismo , Galectina 3/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Inflamación , Membranas Intracelulares/metabolismo , Células MCF-7 , Ratones , Microscopía Confocal , Trasplante de Neoplasias , Transporte de ProteínasRESUMEN
Macroautophagy is a catabolic process that maintains cellular homeostasis and protects cells against various external stresses including starvation. Except for the identification of the Akt-mTORC1 pathway as a major negative regulator, little is known about signaling networks that control macroautophagy under optimal growth conditions. Therefore, we screened a human kinome siRNA library for siRNAs that increase the number of autophagosomes in normally growing MCF-7 human breast carcinoma cells, and identified 10 kinases as regulators of constitutive macroautophagy. Further analysis of these kinases with respect to the autophagic flux, kinase signaling and endolysosomal function identified WNK2 as a positive regulator of autophagosome maturation and nine others as macroautophagy inhibitors. The depletion of MK2, PACSIN1, DAPK2, CDKL3 and SCYL1 functioned upstream of Akt-mTORC1 pathway, whereas CSNK1A1, BUB1, PKLR and NEK4 suppressed autophagosome formation downstream or independent of mTORC1. Importantly, all identified kinases except for BUB1 regulated macroautophagy also in immortalized MCF-10A breast epithelial cells. The kinases identified here shed light to the complex regulation of macroautophagy and open new possibilities for its pharmacological manipulation.
Asunto(s)
Autofagia , Pruebas Genéticas/métodos , Fosfotransferasas/metabolismo , ARN Interferente Pequeño/metabolismo , Mama/patología , Línea Celular Tumoral , Proliferación Celular , Endocitosis , Células Epiteliales/metabolismo , Femenino , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos , Fosfatidilinositol 3-Quinasas , Transporte de Proteínas , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TORRESUMEN
Macroautophagy (hereafter referred to as autophagy) has recently emerged as an attractive target for the treatment of various degenerative diseases and cancer. The discovery of effective pharmaceutical regulators of autophagy has, however, been hindered by a lack of feasible assay systems for autophagic flux. Here, we present a luciferase-based reporter assay that measures autophagic flux in real time in living cells and demonstrate that this assay system is apt for the detection of dose- and stimulus-dependent differences in autophagy kinetics. Furthermore, by screening a small molecule kinase inhibitor library containing 80 compounds we identified 12 compounds as inducers of autophagic flux. Importantly, six inhibitors of the class I phosphoinositide 3-kinase -- protein kinase B -- mammalian target of rapamycin complex 1 axis, the central signaling pathway repressing autophagy, scored as autophagy inducers adequately validating the screen. We conclude that the assay system presented here allows easy and rapid monitoring of autophagy kinetics and is suitable for screening of small molecule libraries.
Asunto(s)
Autofagia/fisiología , Bioensayo/métodos , Luciferasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Antibacterianos/metabolismo , Antineoplásicos Fitogénicos/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Células Cultivadas , Inhibidores Enzimáticos/metabolismo , Etopósido/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Genes Reporteros , Humanos , Luciferasas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Sirolimus/metabolismoRESUMEN
A sigma-2 receptor ligand siramesine induces lysosomal leakage and cathepsin-dependent death of cancer cells in vitro and displays potent anti-cancer activity in vivo. The mechanism by which siramesine destabilizes lysosomes is, however, unknown. Here, we show that siramesine induces a rapid rise in the lysosomal pH that is followed by lysosomal leakage and dysfunction. The rapid accumulation of siramesine into cancer cell lysosomes, its ability to destabilize isolated lysosomes, and its chemical structure as an amphiphilic amine indicate that it is a lysosomotropic detergent. Notably, siramesine triggers also a substantial Atg6- and Atg7-dependent accumulation of autophagosomes that is associated with a rapid and sustained inhibition of mammalian target of rapamycin complex 1 (mTORC1; an inhibitor of autophagy). Siramesine fails, however, to increase the degradation rate of long-lived proteins. Thus, the massive accumulation of autophagosomes is likely to be due to a combined effect of activation of autophagy signaling and decreased autophagosome turnover. Importantly, pharmacological and RNA interference-based inhibition of autophagosome formation further sensitizes cancer cells to siramesine-induced cytotoxicity. These data identify siramesine as a lysosomotropic detergent that triggers cell death via a direct destabilization of lysosomes and cytoprotection by inducing the accumulation of autophagosomes. Threrefore, the combination of siramesine with inhibitors of autophagosome formation appears as a promising approach for future cancer therapy.
Asunto(s)
Antineoplásicos/metabolismo , Autofagia/fisiología , Citoprotección , Detergentes/metabolismo , Indoles/metabolismo , Lisosomas/metabolismo , Fagosomas/metabolismo , Compuestos de Espiro/metabolismo , Animales , Antineoplásicos/química , Línea Celular Tumoral , Detergentes/química , Femenino , Humanos , Concentración de Iones de Hidrógeno , Indoles/química , Membranas Intracelulares/metabolismo , Lisosomas/ultraestructura , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Estructura Molecular , Complejos Multiproteicos , Fosfolípidos/metabolismo , Proteínas , Receptores sigma/metabolismo , Transducción de Señal/fisiología , Compuestos de Espiro/química , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo , Trasplante HeterólogoRESUMEN
Macroautophagy is an evolutionary conserved lysosomal pathway involved in the turnover of cellular macromolecules and organelles. In spite of its essential role in tissue homeostasis, the molecular mechanisms regulating mammalian macroautophagy are poorly understood. Here, we demonstrate that a rise in the free cytosolic calcium ([Ca(2+)](c)) is a potent inducer of macroautophagy. Various Ca(2+) mobilizing agents (vitamin D(3) compounds, ionomycin, ATP, and thapsigargin) inhibit the activity of mammalian target of rapamycin, a negative regulator of macroautophagy, and induce massive accumulation of autophagosomes in a Beclin 1- and Atg7-dependent manner. This process is mediated by Ca(2+)/calmodulin-dependent kinase kinase-beta and AMP-activated protein kinase and inhibited by ectopic Bcl-2 located in the endoplasmatic reticulum (ER), where it lowers the [Ca(2+)](ER) and attenuates agonist-induced Ca(2+) fluxes. Thus, an increase in the [Ca(2+)](c) serves as a potent inducer of macroautophagy and as a target for the antiautophagy action of ER-located Bcl-2.
Asunto(s)
Autofagia/efectos de los fármacos , Autofagia/fisiología , Calcio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Quinasas Activadas por AMP , Adenosina Trifosfato/farmacología , Proteína 7 Relacionada con la Autofagia , Secuencia de Bases , Calcitriol/análogos & derivados , Calcitriol/farmacología , Señalización del Calcio , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Línea Celular , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Ionomicina/farmacología , Microscopía Electrónica , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Serina-Treonina Quinasas TOR , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismoRESUMEN
The "pocket proteins" pRb (retinoblastoma tumor suppressor protein), p107, and p130 regulate cell proliferation via phosphorylation-sensitive interactions with E2F transcription factors and other proteins. We previously identified 22 in vivo phosphorylation sites in human p130, including three sites selectively targeted by cyclin D-Cdk4(6) kinases. Here we assessed the effects of alanine substitution at the individual or combined Cdk4(6)-specific sites in p130, compared with homologous sites in p107 (Thr(369)/Ser(650)/Ser(964)). In U-2-OS cells, the triple p107(DeltaCdk4)* mutant strongly inhibited E2F-4 activity and imposed a G(1) arrest resistant to cyclin D1 coexpression. In contrast, the p130(DeltaCdk4) mutant still responded to cyclin D1, suggesting the existence of additional phosphorylation sites critical for E2F-4 regulation. Extensive mutagenesis, sensitive E2F reporter assays, and cell cycle analyses allowed the identification of six such residues (serines 413, 639, 662, 1044, 1080, and 1112) that, in addition to the Cdk4-specific sites, are necessary and sufficient for the regulation of E2F-4 and the cell cycle by p130. Surprisingly, 12 of the in vivo phosphorylation sites seem dispensable for E2F regulation and probably modulate other functions of p130. These results further elucidate the complex regulation of p130 and provide a molecular mechanism to explain the differential control of p107 and p130 by cyclin-dependent kinases.