Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 124: 72-81, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33863643

RESUMEN

Groundbreaking discoveries in molecular oncology have leveraged our understanding altogether to a new level. Mapping of plethora of cell signaling pathways has enabled researchers to drill down deep into the intermeshed regulatory networks which crosstalk to promote carcinogenesis and metastasis. More importantly, discovery of non-coding RNAs has added new layers of complexity to already complicated nature of cell signaling pathways. The discovery of circular RNAs (circRNAs) has opened the door to an ever-widening understanding of cellular processes that are controlled or influenced by circRNAs. In this review, we have summarized most recent advancements in our understanding related to interplay between circular RNAs and microRNAs for the regulation of NOTCH, Wnt/ß-catenin, Hippo, SHH/GLI, JAK/STAT and TGF/SMAD pathways in different cancers.


Asunto(s)
MicroARNs , Neoplasias , Proteínas Hedgehog , Vía de Señalización Hippo , Humanos , MicroARNs/genética , Neoplasias/patología , ARN Circular/genética , Transducción de Señal/genética , beta Catenina/metabolismo
2.
Semin Cell Dev Biol ; 124: 63-71, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34090752

RESUMEN

Advancements in single-cell RNA sequencing technologies have enabled us to deconvolve immune system heterogeneity by identification of functionally distinct immune cell subsets in disease and health. Discovery of non-coding RNAs has opened new horizons for re-interpretation of regulatory roles of myriad of cell signaling pathways in immunology and oncology. Role of miRNAs, circular RNAs and long non-coding RNAs (lncRNAs) in the context of immunomodulation has just begun to be uncovered and future studies may further expand the repertoire of non-coding RNAs implicated in the regulatory circuits. One of the most recent and exciting aspect in molecular immunology is the delivery of non-coding RNAs through exosomes to the recipient cells which results in the re-wiring of different pathways and protein networks in recipient cells. Broader understanding of all of the layers of regulation in this system can provide useful information that could be harnessed to rationally translate laboratory findings into clinically effective therapeutics.


Asunto(s)
Exosomas , MicroARNs , Neoplasias , ARN Largo no Codificante , Exosomas/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/metabolismo , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
Environ Toxicol ; 39(1): 299-313, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37705323

RESUMEN

Increased neddylation benefits the survival of several types of cancer cells. The inhibition of neddylation has the potential to exert anticancer effects but is rarely assessed in oral cancer cells. This study aimed to investigate the antiproliferation potential of a neddylation inhibitor MLN4924 (pevonedistat) for oral cancer cells. MLN4924 inhibited the cell viability of oral cancer cells more than that of normal oral cells (HGF-1) with 100% viability, that is, IC50 values of oral cancer cells (CAL 27, OC-2, and Ca9-22) are 1.8, 1.4, and 1.9 µM. MLN4924 caused apoptotic changes such as the subG1 accumulation, activation of annexin V, pancaspase, and caspases 3/8/9 of oral cancer cells at a greater rate than in normal oral cells. MLN4924 induced greater oxidative stress in oral cancer cells compared to normal cells by upregulating reactive oxygen species and mitochondrial superoxide and depleting the mitochondrial membrane potential and glutathione. In oral cancer cells, preferential inductions also occurred for DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine). Therefore, this investigation demonstrates that MLN4924 is a potential anti-oral-cancer agent showing preferential inhibition of apoptosis and promotion of DNA damage with fewer cytotoxic effects on normal cells.


Asunto(s)
Apoptosis , Neoplasias de la Boca , Humanos , Proliferación Celular , Línea Celular Tumoral , Neoplasias de la Boca/metabolismo
4.
Semin Cancer Biol ; 83: 197-207, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-32738290

RESUMEN

Data obtained from cutting-edge research have shown that deregulated epigenetic marks are critical hallmarks of cancer. Rapidly emerging scientific evidence has helped in developing a proper understanding of the mechanisms leading to control of cellular functions, from changes in chromatin accessibility, transcription and translation, and in post-translational modifications. Firstly, mechanisms of DNA methylation and demethylation are introduced, as well as modifications of DNA and RNA, with particular focus on N6-methyladenosine (m6A), discussing the effects of these modifications in normal cells and in malignancies. Then, chromatin modifying proteins and remodelling complexes are discussed. Many enzymes and accessory proteins in these complexes have been found mutated or have undergone differential splicing, leading to defective protein complexes. Epigenetic mechanisms acting on nucleosomes by polycomb repressive complexes and on chromatin by SWI/SNF complexes on nucleosome assembly/disassembly, as well as main mutated genes linked to cancers, are reviewed. Among enzymes acting on histones and other proteins erasing the reversible modifications are histone deacetylases (HDACs). Sirtuins are of interest since most of these enzymes not only deacylate histones and other proteins, but also post-translationally modify proteins adding a Mono-ADP-ribose (MAR) moiety. MAR can be read by MACRO-domain containing proteins such as histone MacroH2A1, with specific function in chromatin assembly. Finally, recent advances are presented on non-coding RNAs with a scaffold function, prospecting their role in assembly of chromatin modifying complexes, recruiting enzyme players to chromatin regions. Lastly, the imbalance in metabolites production due to mitochondrial dysfunction is presented, with the potential of these metabolites to inhibit enzymes, either writers, readers or erasers of epitranscriptome marks. In the perspectives, studies are overwied on drugs under development aiming to limit excessive enzyme activities and to reactivate chromatin modifying complexes, for therapeutic application. This knowledge may lead to novel drugs and personalised medicine for cancer patients.


Asunto(s)
Histonas , Neoplasias , Cromatina/genética , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional
5.
Semin Cancer Biol ; 83: 269-282, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33127466

RESUMEN

Noncoding RNAs (ncRNAs) regulation of various diseases including cancer has been extensively studied. Reactive oxidative species (ROS) elevated by oxidative stress are associated with cancer progression and drug resistance, while autophagy serves as an ROS scavenger in cancer cells. However, the regulatory effects of ncRNAs on autophagy and ROS in various cancer cells remains complex. Here, we explore how currently investigated ncRNAs, mainly miRNAs and lncRNAs, are involved in ROS production through modulating antioxidant genes. The regulatory effects of miRNAs and lncRNAs on autophagy-related (ATG) proteins to control autophagy activity in cancer cells are discussed. Moreover, differential expression of ncRNAs in tumor and normal tissues of cancer patients are further analyzed using The Cancer Genome Atlas (TCGA) database. This review hypothesizes links between ATG genes- or antioxidant genes-modulated ncRNAs and ROS production, which might result in tumorigenesis, malignancy, and cancer recurrence. A better understanding of the regulation of ROS and autophagy by ncRNAs might advance the use of ncRNAs as diagnostic and prognostic markers as well as therapeutic targets in cancer therapy.


Asunto(s)
MicroARNs , Neoplasias , Estrés Oxidativo , ARN Largo no Codificante , Antioxidantes/metabolismo , Autofagia/genética , Humanos , MicroARNs/genética , Recurrencia Local de Neoplasia , Neoplasias/genética , Neoplasias/terapia , Estrés Oxidativo/genética , ARN Largo no Codificante/genética , ARN no Traducido/genética , Especies Reactivas de Oxígeno/metabolismo
6.
J Pharmacol Exp Ther ; 384(1): 28-34, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35667688

RESUMEN

Cancer is a multifactorial disease, and a wealth of information has enabled basic and clinical researchers to develop a better conceptual knowledge of the highly heterogeneous nature of cancer. Deregulations of spatio-temporally controlled transduction pathways play a central role in cancer progression. NRF2-driven signaling has engrossed significant attention because of its fundamentally unique features to dualistically regulate cancer progression. Context-dependent diametrically opposed roles of NRF2-induced signaling are exciting. More importantly, non-coding RNA (ncRNA) mediated regulation of NRF2 and interplay between NRF2 and ncRNAs have added new layers of complexity to already intricate nature of NRF2 signaling. There is a gradual enrichment in the existing pool of knowledge related to interplay between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in different cancers. However, surprisingly, there are no clues about interplay between circular RNAs and NRF2 in various cancers. Therefore, future studies must converge on the functional characterization of additional important lncRNAs and circular RNAs, which regulated NRF2-driven signaling or, conversely, NRF2 transcriptionally controlled their expression to regulate various stages of cancer. SIGNIFICANCE STATEMENT: Recently, many researchers have focused on the NRF2-driven signaling in cancer progression. Excitingly, discovery of non-coding RNAs has added new layers of intricacy to the already complicated nature of KEAP1/NRF2 signaling in different cancers. These interactions are shaping the NRF2-driven signaling landscape, and better knowledge of these pathways will be advantageous in pharmacological modulation of non-coding RNA-mediated NRF2 signaling in various cancers.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , ARN Circular , ARN Largo no Codificante/genética
7.
J Pharmacol Exp Ther ; 384(1): 20-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36507844

RESUMEN

The discovery of ferroptosis has paradigmatically shifted our about different types of cell death. The wealth of information gathered over decades of pioneering research has empowered researchers to develop a better comprehension of the versatile regulators of ferroptosis. In this comprehensive review, we have attempted to put a spotlight on the indispensable involvement of non-coding RNAs in the regulation of ferroptosis. We have analyzed the functional role of microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs in the regulation of ferroptosis and how inhibition of ferroptosis promotes carcinogenesis and metastasis. SIGNIFICANCE STATEMENT: The manuscript provides a systematic mechanistic and conceptual comprehension of the recently emerging dynamics of non-coding RNAs and ferroptosis. We also analyze how this interplay shapes the complex process of carcinogenesis and metastasis.


Asunto(s)
Ferroptosis , MicroARNs , ARN Largo no Codificante , Humanos , Ferroptosis/genética , Carcinogénesis , Muerte Celular , ARN Largo no Codificante/genética
8.
Crit Rev Food Sci Nutr ; 63(20): 4325-4350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34751072

RESUMEN

Nutrigenomics utilizes high-throughput genomic technologies to reveal changes in gene and protein levels. Excitingly, ever-growing body of scientific findings has provided sufficient evidence about the interplay between diet and genes. Cutting-edge research and advancements in genomics, epigenetics and metabolomics have deepened our understanding on the role of dietary factors in the inhibition of carcinogenesis and metastasis. Dietary saponins, a type of triterpene glycosides, are generally found in Platycodon grandifloras, Dioscorea oppositifolia, asparagus, legumes, and sea cucumber. Wealth of information has started to shed light on pleiotropic mechanistic roles of dietary saponins in cancer prevention and inhibition. In this review, we have attempted to summarize the in vitro research of dietary saponins in the last two decades by searching common databases such as Google Scholar, PubMed, Scopus, and Web of Science. The results showed that dietary saponins exerted anti-cancer activities via regulation of apoptosis, autophagy, arrest cell cycle, anti-proliferation, anti-metastasis, and anti-angiogenesis, by regulation of several critical signaling pathways, including MAPK, PI3K/Akt/mTOR, NF-κB, and VEGF/VEGFR. However, there is no data about the dosage of dietary saponins for practical anti-cancer effects in human bodies. Extensive clinical studies are needed to confirm the effectiveness of dietary saponins for further commercial and medical applications.


Asunto(s)
Neoplasias , Saponinas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Saponinas/farmacología , Transducción de Señal , Apoptosis , Dieta , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control
9.
Cell Mol Biol (Noisy-le-grand) ; 69(14): 300-302, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279414

RESUMEN

Platelet-Derived Growth Factor (PDGF) mediated signaling has emerged as one of the most extensively studied cascades in cancer development and progression. Overwhelmingly increasing data obtained from preclinical and clinical studies has helped us to develop a near-complete resolution of PDGF/PDGFR signaling landscape. Phenotype- and genotype-driven studies have provided proof-of-concept that therapeutic targeting of PDGF/PDGFR signaling axis is necessary to improve clinical outcome.   Kinase inhibitor drug discovery programmes have broadened their focus to include a wide variety of kinase targets. Based on the insights gleaned from previously published high-impact research, it is clear that different transduction cascades crosstalk with PDGF/PDGFR signaling during primary tumor invasion, dissemination and ultimate metastasis of cancer cells. In this commentary, we will focus on involvement of PDGF/PDGFR signaling in different cancers and how pharmacological targeting of this signaling cascade inhibits cancer progression.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Carcinogénesis/genética
10.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569824

RESUMEN

Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.


Asunto(s)
Exosomas , MicroARNs , MicroARNs/genética , Exosomas/genética
11.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240198

RESUMEN

Physalis plants are commonly used traditional medicinal herbs, and most of their extracts containing withanolides show anticancer effects. Physapruin A (PHA), a withanolide isolated from P. peruviana, shows antiproliferative effects on breast cancer cells involving oxidative stress, apoptosis, and autophagy. However, the other oxidative stress-associated response, such as endoplasmic reticulum (ER) stress, and its participation in regulating apoptosis in PHA-treated breast cancer cells remain unclear. This study aims to explore the function of oxidative stress and ER stress in modulating the proliferation and apoptosis of breast cancer cells treated with PHA. PHA induced a more significant ER expansion and aggresome formation of breast cancer cells (MCF7 and MDA-MB-231). The mRNA and protein levels of ER stress-responsive genes (IRE1α and BIP) were upregulated by PHA in breast cancer cells. The co-treatment of PHA with the ER stress-inducer (thapsigargin, TG), i.e., TG/PHA, demonstrated synergistic antiproliferation, reactive oxygen species generation, subG1 accumulation, and apoptosis (annexin V and caspases 3/8 activation) as examined by ATP assay, flow cytometry, and western blotting. These ER stress responses, their associated antiproliferation, and apoptosis changes were partly alleviated by the N-acetylcysteine, an oxidative stress inhibitor. Taken together, PHA exhibits ER stress-inducing function to promote antiproliferation and apoptosis of breast cancer cells involving oxidative stress.


Asunto(s)
Neoplasias de la Mama , Endorribonucleasas , Humanos , Femenino , Endorribonucleasas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis , Estrés Oxidativo , Estrés del Retículo Endoplásmico , Línea Celular Tumoral
12.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903477

RESUMEN

The renaissance of research into natural products has unequivocally and paradigmatically shifted our knowledge about the significant role of natural products in cancer chemoprevention. Bufalin is a pharmacologically active molecule isolated from the skin of the toad Bufo gargarizans or Bufo melanostictus. Bufalin has characteristically unique properties to regulate multiple molecular targets and can be used to harness multi-targeted therapeutic regimes against different cancers. There is burgeoning evidence related to functional roles of signaling cascades in carcinogenesis and metastasis. Bufalin has been reported to regulate pleiotropically a myriad of signal transduction cascades in various cancers. Importantly, bufalin mechanistically regulated JAK/STAT, Wnt/ß-Catenin, mTOR, TRAIL/TRAIL-R, EGFR, and c-MET pathways. Furthermore, bufalin-mediated modulation of non-coding RNAs in different cancers has also started to gain tremendous momentum. Similarly, bufalin-mediated targeting of tumor microenvironments and tumor macrophages is an area of exciting research and we have only started to scratch the surface of the complicated nature of molecular oncology. Cell culture studies and animal models provide proof-of-concept for the impetus role of bufalin in the inhibition of carcinogenesis and metastasis. Bufalin-related clinical studies are insufficient and interdisciplinary researchers require detailed analysis of the existing knowledge gaps.


Asunto(s)
Bufanólidos , beta Catenina , Animales , beta Catenina/metabolismo , Línea Celular Tumoral , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Bufanólidos/farmacología , Carcinogénesis , Apoptosis , Microambiente Tumoral
13.
Semin Cancer Biol ; 73: 294-301, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33515693

RESUMEN

Pomegranate has attracted overwhelming appreciation as a highly nutritional food for health improvement and treatment of various diseases. Based on the exciting insights gleaned from decades of research, it seems exciting to note that pomegranate and its bioactive components show high-quality pharmacological properties. Pomegranate has been shown to be effective against different cancers in xenografted mice. However, realistically, we still have incomplete understanding of the true potential of pomegranate as versatile regulator of deregulated oncogenic transduction cascades in different cancers. In this review I will exclusively focus on modulation of oncogenic signaling cascades by pomegranate or its bioactive components in different cancers. Gaze through the lens indicates that certain hints have emerged which highlight regulatory role of pomegranate in Wnt/ß-catenin, mTOR and NF-κB-driven pathways. However, there are unresolved questions related to targeting of TGF/SMAD, JAK/STAT, SHH/GLI, NOTCH by pomegranate in variety of cancers. In accordance with same approach, pomegranate mediated regulations of TRAIL/TRAIL-R and FasL/Fas have also been insufficiently studied. Therefore, I will attempt to analyze and discuss the existing knowledge gaps in our understanding related to ability of pomegranate to modulate myriad of protein networks. It will not be wrong if we say that researchers have just started to scratch the surface of a new and mysterious web of medicinal properties of pomegranate to target multiple transduction cascades.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Granada (Fruta)/química , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/química , Humanos , Fitoquímicos/química , Extractos Vegetales/química
14.
Semin Cancer Biol ; 73: 302-309, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33152487

RESUMEN

Research over decades has enabled us in developing a better understanding of the multifaceted and heterogeneous nature of cancer. High-throughput technologies have helped the researchers in unraveling of the underlying mechanisms which centrally regulate cancer onset, metastasis and drug resistance. Our rapidly expanding knowledge about signal transduction cascade has added another layer of complexity to already complicated nature of cancer. Deregulation of cell signaling pathways played a linchpin role in carcinogenesis and metastasis. Cucurbitacins have gained tremendous attention because of their remarkable pharmacological properties and considerable ability to mechanistically modulate myriad of cell signaling pathways in different cancers. In this review, we have attempted to provide a mechanistic and comprehensive analysis of regulation of oncogenic pathways by cucurbitacins in different cancers. We have partitioned this review into separate sections for exclusive analysis of each signaling pathway and critical assessment of the knowledge gaps. In this review, we will summarize most recent and landmark developments related to regulation of Wnt/ß-catenin, JAK/STAT, mTOR, VEGFR, EGFR and Hippo pathway by cucurbitacins. Moreover, we will also address how cucurbitacins regulate DNA damage repair pathway and TRAIL-driven signaling in various cancers. However, there are still outstanding questions related to regulation of SHH/GLI, TGF/SMAD and Notch-driven pathway by cucurbitacins in different cancers. Future studies must converge on the analysis of full-fledge potential of cucurbitacins by in-depth analysis of these pathways and how these pathways can be therapeutically targeted by cucurbitacins.


Asunto(s)
Cucurbitacinas/farmacología , Neoplasias , Fitoquímicos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Humanos , Quinasas Janus/efectos de los fármacos , ARN no Traducido/efectos de los fármacos , Factores de Transcripción STAT/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos
15.
Mol Biol Rep ; 49(6): 4171-4178, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35301659

RESUMEN

BACKGROUND: Transforming growth factor beta (TGF-ß) superfamily has key role in cell proliferation which leads to tumor promoting activities at metastatic stage of cancer. Inhibition of transforming growth factor beta receptor (TGFßR) signaling pathway can provide better therapeutic strategy to control cancer. Natural products are best known for their safety, less toxic nature, antioxidant characteristics making them a promising candidate to inhibit TGFßR signaling pathway. METHODS AND RESULTS: Crude methanolic extracts (CMEs) of 16 selected plants were prepared by using maceration method and subjected to phytochemical assays for identification of major phytometabolites particularly cancer chemopreventive antioxidant constituents. Total flavonoid content of all plants CME was > 0.6 mg/ml exhibiting the Cichorium intybus contains comparatively highest amount of total flavonoid content (0.53 mg/ml). Scanvenging activity of all plants was determined having IC50 ranges between 2 and 88 (µg/ml) while Moringa oleifera revealed the maximum scavenging activity (IC50 2.03 µg/ml). Comparative cytotoxicity of plant extracts was evaluated in HUH and MCF-7 cell lines using 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) colorimetric assay. The nine active plant extracts i.e. Fagonia cretica, Argemone Mexicana, Rubus fruticosus, M. oleifera, Punica granatum, Cichorium intybus, Xanthium strumarium, Carissa opaca, Cyperus rotundus were identified based on their high antiproliferative activity > 50% against cancer cell lines and subjected to relative expression studies. Modulation of TGFß signaling molecules (i.e.TGFßR1, 2 & 3, SMAD3, SMAD5) and ubiquitous proteins i.e. SMURF1 and SMURF2 genetic expression by potent extracts was determined by RT-PCR using GAPDH (housekeeping gene) as gene of reference. CONCLUSIONS: This present study revealed that CME of Fagonia cretica and Argemone mexicana significantly inhibit TGF beta mediated signaling cascade by downregulating the gene expression fold change > 1 of TGFßR 1, 2 & 3 and receptor associated complex protein SMAD3 as compared to control.


Asunto(s)
Neoplasias , Receptores de Factores de Crecimiento Transformadores beta , Antioxidantes/farmacología , Flavonoides/farmacología , Humanos , Células MCF-7 , Extractos Vegetales/química , Extractos Vegetales/farmacología , Receptores de Factores de Crecimiento Transformadores beta/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina-Proteína Ligasas
16.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35682990

RESUMEN

Cancer is a life-threatening and multifaceted disease. Pioneering research works in the past three decades have mechanistically disentangled intertwined signaling networks which play contributory roles in carcinogenesis and metastasis. Phenomenal strides have been made in leveraging our scientific knowledge altogether to a new level of maturity. Rapidly accumulating wealth of information has underlined a myriad of transduction cascades which can be pharmaceutically exploited for cancer prevention/inhibition. Natural products serve as a treasure trove and compel interdisciplinary researchers to study the cancer chemopreventive roles of wide-ranging natural products in cell culture and preclinical studies. Experimental research related to thymoquinone has gradually gained momentum because of the extra-ordinary cancer chemopreventive multifunctionalities of thymoquinone. In this mini-review, we provide an overview of different cell signaling cascades reported to be regulated by thymoquinone for cancer chemoprevention. Essentially, thymoquinone efficacy has also been notably studied in animal models, which advocates for a rationale-based transition of thymoquinone from the pre-clinical pipeline to clinical trials.


Asunto(s)
Productos Biológicos , Neoplasias , Animales , Benzoquinonas/farmacología , Benzoquinonas/uso terapéutico , Productos Biológicos/uso terapéutico , Carcinogénesis , Neoplasias/patología , Transducción de Señal
17.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269900

RESUMEN

Natural product research is a cornerstone of the architectural framework of clinical medicine. Berbamine is a natural, potent, pharmacologically active biomolecule isolated from Berberis amurensis. Berbamine has been shown to modulate different oncogenic cell-signaling pathways in different cancers. In this review, we comprehensively analyze how berbamine modulates deregulated pathways (JAK/STAT, CAMKII/c-Myc) in various cancers. We systematically analyze how berbamine induces activation of the TGF/SMAD pathway for the effective inhibition of cancer progression. We also summarize different nanotechnological strategies currently being used for proficient delivery of berbamine to the target sites. Berbamine has also been reported to demonstrate potent anti-cancer and anti-metastatic effects in tumor-bearing mice. The regulation of non-coding RNAs by berbamine is insufficiently studied, and future studies must converge on the identification of target non-coding RNAs. A better understanding of the regulatory role of berbamine in the modulation of non-coding RNAs and cell-signaling pathways will be advantageous in the effective translation of laboratory findings to clinically effective therapeutics.


Asunto(s)
Bencilisoquinolinas , Neoplasias , Animales , Apoptosis , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Transducción de Señal
18.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142156

RESUMEN

Breast cancer is the second most common cancer in women. The roles of the SIRT and FoxO proteins in tumor progression are known, but their roles in metastasis have not yet been clearly elucidated. In our study, we investigated the roles of SIRT and FoxO proteins their downstream pathways, proteins p21 and p53, in tumor progression and metastasis. We evaluated these proteins in vitro using metastatic 4TLM and 67NR cell lines, as well as their expression levels in tumor-bearing mice. In addition, the regulatory role of SIRT and FoxO proteins in different transduction cascades was examined by IPA core analysis, and clinicopathological evidence was investigated in the TCGA database. In primary tumors, the expression levels of SIRT1, p21, p53, E2F1 and FoxO proteins were higher in 67NR groups. In metastatic tissues, the expression levels of SIRT1, E2F1 and FoxO proteins were found to be enhanced, whereas the levels of p53 and p21 expression were noted to be reduced. IPA analysis also provided empirical evidence of the mechanistic involvement of SIRT and FoxO proteins in tumor progression and metastasis. In conclusion, SIRT1 was found to co-operate with FoxO proteins and to play a critical role in metastasis. Additional research is required to determine why overexpression of SIRT1 in metastatic tissues has oncogenic effects.


Asunto(s)
Neoplasias de la Mama , Sirtuina 1 , Animales , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Femenino , Humanos , Ratones , Transducción de Señal , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955525

RESUMEN

Landmark discoveries in molecular oncology have provided a wide-angle overview of the heterogenous and therapeutically challenging nature of cancer. The power of modern 'omics' technologies has enabled researchers to deeply and comprehensively characterize molecular mechanisms underlying cellular functions. Interestingly, high-throughput technologies have opened new horizons for the design and scientific fool-proof evaluation of the pharmacological properties of targeted chemical compounds to tactfully control the activities of the oncogenic protein networks. Groundbreaking discoveries have galvanized the expansion of the repertoire of available pharmacopoeia to therapeutically target a myriad of deregulated oncogenic pathways. Natural product research has undergone substantial broadening, and many of the drugs which constitute the backbone of modern pharmaceuticals have been derived from the natural cornucopia. Baicalein has gradually gained attention because of its unique ability to target different oncogenic signal transduction cascades in various cancers. We have partitioned this review into different sub-sections to provide a broader snapshot of the oncogenic pathways regulated by baicalein. In this review, we summarize baicalein-mediated targeting of WNT/ß-catenin, AKT/mTOR, JAK/STAT, MAPK, and NOTCH pathways. We also critically analyze how baicalein regulates non-coding RNAs (microRNAs and long non-coding RNAs) in different cancers. Finally, we conceptually interpret baicalein-mediated inhibition of primary and secondary growths in xenografted mice.


Asunto(s)
Flavanonas , MicroARNs , Neoplasias , Animales , Carcinogénesis , Flavanonas/farmacología , Flavanonas/uso terapéutico , Ratones , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal
20.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328402

RESUMEN

Cryptocaryone (CPC) was previously reported as preferential for killing natural products in oral cancer cells. However, its radiosensitizing potential combined with ultraviolet C (UVC) cell killing of oral cancer cells remains unclear. This study evaluates the combined anti-proliferation effect and clarifies the mechanism of combined UVC/CPC effects on oral cancer cells. UVC/CPC shows higher anti-proliferation than individual and control treatments in a low cytotoxic environment on normal oral cells. Mechanistically, combined UVC/CPC generates high levels of reactive oxygen species and induces mitochondrial dysfunction by generating mitochondrial superoxide, increasing mitochondrial mass and causing the potential destruction of the mitochondrial membrane compared to individual treatments. Moreover, combined UVC/CPC causes higher G2/M arrest and triggers apoptosis, with greater evidence of cell cycle disturbance, annexin V, pancaspase, caspases 3/7 expression or activity in oral cancer cells than individual treatments. Western blotting further indicates that UVC/CPC induces overexpression for cleaved types of poly (ADP-ribose) polymerase and caspase 3 more than individual treatments. Additionally, UVC/CPC highly induces γH2AX and 8-hydroxy-2'-deoxyguanosine adducts as DNA damage in oral cancer cells. Taken together, CPC shows a radiosensitizing anti-proliferation effect on UVC irradiated oral cancer cells with combined effects through oxidative stress, apoptosis and DNA damage.


Asunto(s)
Apoptosis , Neoplasias de la Boca , 8-Hidroxi-2'-Desoxicoguanosina , Línea Celular Tumoral , Proliferación Celular , Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Potencial de la Membrana Mitocondrial , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/radioterapia , Poli(ADP-Ribosa) Polimerasas/metabolismo , Pironas , Especies Reactivas de Oxígeno/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA