RESUMEN
INTRODUCTION: The earliest changes in the brain due to Alzheimer's disease are associated with the neural networks related to memory function. We investigated changes in functional and structural connectivity among regions that support memory function in prodromal Alzheimer's disease, i.e., during the mild cognitive impairment (MCI) stage. METHODS: Twenty-three older healthy controls and 25 adults with MCI underwent multimodal MRI scanning. Limbic white matter tracts-the fornix, parahippocampal cingulum, retrosplenial cingulum, subgenual cingulum and uncinate fasciculus-were reconstructed in ExploreDTI using constrained spherical deconvolution-based tractography. Using a network-of-interest approach, resting-state functional connectivity time-series correlations among sub-parcellations of the default mode and limbic networks, the hippocampus and the thalamus were calculated in Conn. ANALYSIS: Controlling for age, education, and gender between group linear regressions of five diffusion-weighted measures and of resting state connectivity measures were performed per hemisphere. FDR-corrections were performed within each class of measures. Correlations of within-network Fisher Z-transformed correlation coefficients and the mean diffusivity per tract were performed. Whole-brain graph theory measures of cluster coefficient and average path length were inspecting using the resting state data. RESULTS & CONCLUSION: MCI-related changes in white matter structure were found in the fornix, left parahippocampal cingulum, left retrosplenial cingulum and left subgenual cingulum. Functional connectivity decreases were observed in the MCI group within the DMN-a sub-network, between the hippocampus and sub-areas -a and -c of the DMN, between DMN-c and DMN-a, and, in the right hemisphere only between DMN-c and both the thalamus and limbic-a. No relationships between white matter tract 'integrity' (mean diffusivity) and within sub-network functional connectivity were found. Graph theory revealed that changes in the MCI group was mostly restricted to diminished between-neighbour connections of the hippocampi and of nodes within DMN-a and DMN-b.
Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Fórnix/fisiopatología , Red Nerviosa/fisiopatología , Sustancia Blanca/fisiopatología , Adulto , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Femenino , Fórnix/diagnóstico por imagen , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Pruebas Neuropsicológicas , Descanso , Sustancia Blanca/diagnóstico por imagenRESUMEN
Alzheimer's disease (AD) and its prodromal state amnestic mild cognitive impairment (aMCI) are characterized by widespread abnormalities in inter-areal white matter fiber pathways and parallel disruption of default mode network (DMN) resting state functional and effective connectivity. In healthy subjects, DMN and task positive network interaction are modulated by the thalamus suggesting that abnormal task-based DMN deactivation in aMCI may be a consequence of impaired thalamo-cortical white matter circuitry. Thus, this article uses a multimodal approach to assess white matter integrity between thalamus and DMN components and associated effective connectivity in healthy controls (HCs) relative to aMCI patients. Twenty-six HC and 20 older adults with aMCI underwent structural, functional and diffusion MRI scanning using the high angular resolution diffusion-weighted acquisition protocol. The DMN of each subject was identified using independent component analysis (ICA) and resting state effective connectivity was calculated between thalamus and DMN nodes. White matter integrity changes between thalamus and DMN were investigated with constrained spherical deconvolution (CSD) tractography. Significant structural deficits in thalamic white matter projection fibers to posterior DMN components posterior cingulate cortex (PCC) and lateral inferior parietal lobe (IPL) were identified together with significantly reduced effective connectivity from left thalamus to left IPL. Crucially, impaired thalamo-cortical white matter circuitry correlated with memory performance. Disrupted thalamo-cortical structure was accompanied by significant reductions in IPL and PCC cortico-cortical effective connectivity. No structural deficits were found between DMN nodes. Abnormal posterior DMN activity may be driven by changes in thalamic white matter connectivity; a view supported by the close anatomical and functional association of thalamic nuclei effected by AD pathology and the posterior DMN nodes. We conclude that dysfunctional posterior DMN activity in aMCI is consistent with disrupted cortico-thalamo-cortical processing and thalamic-based dissemination of hippocampal disease agents to cortical hubs.
RESUMEN
The aim of this study was to investigate the aging-related structural changes of the cingulum, one of the major components of the limbic network, which has a critical role in emotion, attention, and memory. Thirty-five healthy young adults (22.3 ± 2.7 years) and 33 healthy older adults (69.5 ± 3.5 years) were recruited. Diffusion weighted imaging data were acquired with a b-value = 2000 sec/mm2 and 61 diffusion directions and 4 non-weighted images. The fiber directions in each voxel were based on the constrained spherical deconvolution model. The cingulum was segmented into three branches using deterministic tractography (subgenual, retrosplenial, and parahippocampal), using a region-of-interest-based approach. Atlas-based tractography was the method used to obtain the output tracts of each branch of the cingulum. Along-tract analysis was performed on each branch. We found a statistically significant change with aging in the left subgenual branch of the cingulum with a decrease in fractional anisotropy and axial diffusivity, as well as an increase in radial diffusivity. No statistically significant differences were found between young and older groups in the other two branches. This study adds to knowledge about how the cingulum changes structurally along its entire length during aging in a more detailed way, thanks to an advanced methodological approach.
Asunto(s)
Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Anciano , Análisis de Varianza , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Vías Nerviosas/diagnóstico por imagen , Pruebas Neuropsicológicas , Adulto JovenRESUMEN
In this study, we wished to examine the relationship between the structural connectivity of the fornix, a white matter (WM) tract in the limbic system, which is affected in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease, and the resting-state functional connectivity (FC) of two key related subcortical structures, the thalamus, and hippocampus. Twenty-two older healthy controls (HC) and 18 older adults with aMCI underwent multi-modal MRI scanning. The fornix was reconstructed using constrained-spherical deconvolution-based tractography. The FC between the thalamus and hippocampus was calculated using a region-of-interest approach from which the mean time series were exacted and correlated. Diffusion tensor imaging measures of the WM microstructure of the fornix were correlated against the Fisher Z correlation values from the FC analysis. There was no difference between the groups in the fornix WM measures, nor in the resting-state FC of the thalamus and hippocampus. We did however find that the relationship between functional and structural connectivity differed significantly between the groups. In the HCs, there was a significant positive association between linear diffusion (CL) in the fornix and the FC of the thalamus and hippocampus, however, there was no relationship between these measures in the aMCI group. These preliminary findings suggest that in aMCI, the relationship between the functional and structural connectivity of regions of the limbic system may be significantly altered compared to healthy ageing. The combined use of diffusion weighted imaging and functional MRI may advance our understanding of neural network changes in aMCI, and elucidate subtle changes in the relationship between structural and functional brain networks.