Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 12(28): 6096-110, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27363780

RESUMEN

Hydrogels formed by polypeptides could be much-favored tools for drug delivery because their main ingredients are generally biodegradable. However, the gelation of peptides in aqueous solution generally requires a minimal length of the peptide as well as distinct sequences of hydrophilic and hydrophobic residues. The aggregation of short peptides like tripeptides, which are relatively cheap and offer a high degree of biodegradability, are generally thought to require a high hydrophobicity of their residues. We found that contrary to this expectation cationic glycylalanylglycine in 55 mol% ethanol/45 mol% water forms a gel below a melting temperature of ca. 36 °C. A pure hydrogel state can be obtained after allowing the ethanol component to evaporate. The gel phase consists of crystalline fibrils of several 100 µm, which form a sample-spanning network. Rheological data reveal a soft elastic solid gel. We investigated the kinetics of the various processes that lead to the final gel state of the ternary mixture by a unique combination of UV circular dichroism, infrared, vibrational circular dichroism (VCD) and rheological measurements. A mathematical analysis of our data show that gelation is preceded by the formation of peptide ß-sheet like tapes or ribbons, which give rise to a significant enhancement of the amide I' VCD signal, and the subsequent formation of rather thick and long fibrils. The VCD signals indicate that the tapes exhibit a right-handed helicity at temperatures above 16 °C and a left-handed helicity below. The tapes'/ribbons' helicity change occurs at a temperature where the UVCD data reflect a relatively long nucleation process. The kinetics of gel formation probed by the storage and loss moduli are composed of a fast process that follows tape/ribbon/fibril formation and is clearly identifiable in a movie that shows the gelation process and a slow process that causes an additional gel stabilization. The rheological data indicate that left-handed fibrils observed at low temperatures form a more solid-like structure than their right-handed counterparts formed at higher temperatures. Taken together our data reveal GAG as an unexpected gelator, the formation of which is underlied by a set of distinguishable kinetic processes.

2.
J Phys Chem B ; 121(23): 5744-5758, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28530400

RESUMEN

The conformational propensity of amino acid residues is determined by an intricate balance of peptide-solvent and solvent-solvent interactions. To explore how the systematic replacement of water by a cosolvent affects the solvation of both the amino acid backbone and side chains, we performed a combined vibrational spectroscopy and NMR study of cationic glycylalanylglycine (GAG) in different ethanol/water mixtures of between 0 and 42 mol percent ethanol. Classical model peptide N'-methylacetamide was used as a reference system to probe solvent-induced spectroscopic changes. The alanine residue of GAG in water is known to exhibit a very high propensity for polyproline II (pPII). Adding up to 30 mol % ethanol at room temperature leads only to minor changes in the Ramachandran distribution of alanine, which mostly changes within the individual conformational subspaces. A further increase in the ethanol fractions leads to a destabilization of pPII and a stabilization of ß-strand conformations. At higher temperatures, different degrees of enthalpy-entropy compensations lead to a much stronger influence of ethanol on the peptide's conformational distribution. Ethanol-induced changes in chemical shifts and amide I wavenumbers strongly suggest that ethanol replaces water preferentially in the solvation shell of the polar C-terminal peptide group and of the alanine side chain, whereas the N-terminal group remains mostly hydrated. Furthermore, we found that ethanol interacts more strongly with the peptide if the latter adopts ß-strand conformations. This leads to an unusual positive temperature coefficient for the chemical shift of the C-terminal amide proton. Our data suggests a picture in which GAG eventually accumulates at water-ethanol interfaces if the ethanol fractions exceed 0.3, which explains why the further addition of ethanol eventually causes self-aggregation and the subsequent formation of a hydrogel.


Asunto(s)
Etanol/química , Glicina/química , Vibración , Agua/química , Sitios de Unión , Cationes/química , Glicina/análogos & derivados , Espectroscopía de Resonancia Magnética , Conformación Molecular , Termodinámica
3.
Chem Commun (Camb) ; 51(92): 16498-501, 2015 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-26414527

RESUMEN

The cationic tripeptide GAG undergoes three conformational changes in binary mixtures of water and ethanol. At 17 mol% of ethanol conformational sampling is shifted from pPII towards ß-strands. A more pronounced shift in the same direction occurs at 40 mol%. At ca. 55 mol% of ethanol and above a peptide concentration of ca. 0.2 M the ternary peptide-water-ethanol mixture forms a hydrogel which is comprised of unusually large crystalline like non-ß sheet fibrils forming a sample spanning matrix.


Asunto(s)
Etanol/química , Péptidos/química , Agua/química , Geles , Conformación Molecular , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA