RESUMEN
To leverage complementary mechanisms for cancer cell removal, we developed a novel cell engineering and therapeutic strategy co-opting phagocytic clearance and antigen presentation activity into T cells. We engineered a chimeric engulfment receptor (CER)-1236, which combines the extracellular domain of TIM-4, a phagocytic receptor recognizing the "eat me" signal phosphatidylserine, with intracellular signaling domains (TLR2/TIR, CD28, and CD3ζ) to enhance both TIM-4-mediated phagocytosis and T cell cytotoxic function. CER-1236 T cells demonstrate target-dependent phagocytic function and induce transcriptional signatures of key regulators responsible for phagocytic recognition and uptake, along with cytotoxic mediators. Pre-clinical models of mantle cell lymphoma (MCL) and EGFR mutation-positive non-small cell lung cancer (NSCLC) demonstrate collaborative innate-adaptive anti-tumor immune responses both in vitro and in vivo. Treatment with BTK (MCL) and EGFR (NSCLC) inhibitors increased target ligand, conditionally driving CER-1236 function to augment anti-tumor responses. We also show that activated CER-1236 T cells exhibit superior cross-presentation ability compared with conventional T cells, triggering E7-specific TCR T responses in an HLA class I- and TLR-2-dependent manner, thereby overcoming the limited antigen presentation capacity of conventional T cells. Therefore, CER-1236 T cells have the potential to achieve tumor control by eliciting both direct cytotoxic effects and indirect-mediated cross-priming.
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Adulto , Linfocitos T , Reactividad Cruzada , Fosfatidilserinas , Antígenos de Neoplasias , Receptores ErbB , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T/genéticaRESUMEN
PURPOSE: Disruption of lipid bilayer asymmetry is a common feature observed in cancer cells and offers novel routes for therapeutic targeting. We used the natural immune receptor TIM-4 to interrogate for loss of plasma membrane phospholipid polarity in primary acute myelogenous leukemia (AML) samples and evaluated the anti-leukemic activity of TIM-4-L-directed T-cell therapy in preclinical AML models. EXPERIMENTAL DESIGN: We performed FACS analysis on 33 primary AML bone marrow specimens and correlated TIM-4-L expression frequency and intensity with molecular disease characteristics. Using Kasumi-1 and MV-4-11 AML cell lines, we further tested the anti-leukemic effects of TIM-4-L-directed engineered T cells in vitro and in vivo. RESULTS: We found that 86% of untreated AML blasts displayed upregulation of cell surface TIM-4-L. These observations were agnostic to AML genetic classification, as samples with mutations in TP53, ASXL1, and RUNX1 displayed TIM-4-L upregulation similar to that seen in favorable and intermediate subtypes. TIM-4-L dysregulation was also stably present in AML cell lines. To evaluate the potential of targeting upregulated TIM-4-L with adoptive T-cell therapy, we constructed TIM-4-L-directed engineered T cells, which demonstrated potent anti-leukemic effects, effectively eliminating AML cell lines with a range of endogenous TIM-4-L expression levels both in vitro and in vivo. CONCLUSIONS: These results highlight TIM-4-L as a highly prevalent target on AML across a range of genetic classifications and novel target for T-cell-based therapy in AML. Further investigations into the role of TIM-4-L in AML pathogenesis and its potential as an anti-leukemic target for clinical development are warranted.