Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 49(39): 8468-77, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20799727

RESUMEN

The Wilson disease protein (ATP7B) is a copper-transporting member of the P-type ATPase superfamily, which plays a central role in copper homeostasis and interacts with the copper chaperone Atox1. The N-terminus of ATP7B is comprised of six copper-binding domains (WCBDs), each capable of binding one copper atom in the +1 oxidation state. To better understand the regulatory effect of copper binding to these domains, we have performed NMR characterization of WCBD4-6 (domains 4-6 of ATP7B). (15)N relaxation measurements on the apo and Cu(I)-bound WCBD4-6 show that there is no dramatic change in the dynamic properties of this three-domain construct; the linker between domains 4 and 5 remains flexible, domains 5 and 6 do not form a completely rigid dimer but rather have some flexibility with respect to each other, and there is minimal change in the relative orientation of the domains in the two states. We also show that, contrary to previous reports, the protein-protein interaction between Atox1 and the copper-binding domains takes place even in the absence of copper. Comparison of apo and Cu(I)-bound spectra of WCBD1-6 shows that binding of Cu(I) does not induce the formation of a unit that tumbles as a single entity, consistent with our results for WCBD4-6. We propose that copper transfer to and between the N-terminal domains of the Wilson Cu-ATPase occurs via protein interactions that are facilitated by the flexibility of the linkers and the motional freedom of the domains with respect to each other.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Transportadoras de Cobre , ATPasas Transportadoras de Cobre , Humanos , Metalochaperonas , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Estructura Terciaria de Proteína
2.
Biochim Biophys Acta ; 1688(1): 78-85, 2004 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-14732483

RESUMEN

Wilson disease is an autosomal disorder of copper transport caused by mutations in the ATP7B gene encoding a copper-transporting P-type ATPase. The Long Evans Cinnamon (LEC) rat is an established animal model for Wilson disease. We have used structural homology modelling of the N-terminal copper-binding region of the rat atp7b protein (rCBD) to reveal the presence of a domain, the fourth domain (rD4), which was previously thought to be missing from rCBD. Although the CXXC motif is absent from rD4, the overall fold is preserved. Using a wide range of techniques, rCBD is shown to undergo metal-induced secondary and tertiary structural changes similar to WCBD. Competition 65Zn(II)-blot experiments with rCBD demonstrate a binding cooperativity unique to Cu(I). Far-UV circular dichroism (CD) spectra suggest significant secondary structural transformation occurring when 2-3 molar equivalents of Cu(I) is added. Near-UV CD spectra, which indicate tertiary structural transformations, show a proportional decrease in rCBD disulfide bonds upon the incremental addition of Cu(I), and a maximum 5:1 Cu(I) to protein ratio. The similarity of these results to those obtained for the Wilson disease N-terminal copper-binding region (WCBD), which has six copper-binding domains, suggests that the metal-dependent conformational changes observed in both proteins may be largely determined by the protein-protein interactions taking place between the heavy metal-associated (HMA) domains, and remain largely unaffected by the absence of one of the six CXXC copper-binding sites.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Transporte de Catión/genética , Cobre/química , Adenosina Trifosfatasas/biosíntesis , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Unión Competitiva , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Transporte de Catión/química , Dicroismo Circular , Clonación Molecular , ATPasas Transportadoras de Cobre , ADN Complementario/biosíntesis , ADN Complementario/química , Vectores Genéticos , Datos de Secuencia Molecular , Conformación Proteica , Desnaturalización Proteica , Estructura Terciaria de Proteína , Ratas , Alineación de Secuencia , Elementos de Transición/química , Radioisótopos de Zinc
3.
Environ Health Perspect ; 110 Suppl 5: 695-8, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12426114

RESUMEN

Wilson disease is an autosomal recessive disorder of copper metabolism. The Wilson disease protein is a putative copper-transporting P-type ATPase, ATP7B, whose malfunction results in the toxic accumulation of copper in the liver and brain, causing the hepatic and/or neurological symptoms accompanying this disease. The cytosolic N-terminal domain (approximately 70 kDa) of this ATPase comprises six heavy metal-associated domains, each of which contains the conserved metal-binding motif GMTCXXC. The N-terminal domain (Wilson disease copper-binding domain [WCBD]) has been expressed, purified, and characterized using various techniques. The WCBD binds six atoms of copper in the +1 oxidation state competitively, and with a greater affinity than all other metals. The copper atom is coordinated by two cysteines in a distorted linear geometry. Copper binds the WCBD in a cooperative manner and induces secondary and tertiary conformation changes. Zinc binding to the WCBD has also been characterized by circular dichroism spectroscopy and shown to produce conformational changes that are completely different from those induced by copper. The phosphorylation/nucleotide-binding domain of ATP7B has also been expressed and characterized and shown to be capable of binding ATP but lacking ATPase activity. A peptide corresponding to the sixth transmembrane domain of ATP7B has been constructed and shown to undergo secondary conformational changes upon binding a single atom of copper. Finally, a chimeric protein consisting of the WCBD and truncated ZntA, a zinc-transporting ATPase lacking the N-terminal domain, has been constructed and analyzed for metal ion selectivity. These results suggest that the core determines the metal ion specificity of P-type ATPases, and the N-terminal metal-binding domain may play a regulatory role.


Asunto(s)
Adenosina Trifosfatasas/farmacología , Proteínas de Transporte de Catión/farmacología , Cobre/farmacocinética , Degeneración Hepatolenticular/fisiopatología , Sitios de Unión , Cobre/química , ATPasas Transportadoras de Cobre , Regulación de la Expresión Génica , Humanos , Iones , Fosforilación , Conformación Proteica
4.
J Inorg Biochem ; 98(9): 1483-94, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15337600

RESUMEN

With the aim to investigate the mechanism of Cu(I) transport by Wilson ATPase (ATP7B), we have studied the interaction of the peptides 2K10p (CH(3)CO-Lys-Gly-Met-Thr-Cys-Ala-Ser-Cys-Val-His-Asn-Lys-CONH(2)), and 2K8p (CH(3)CO-Lys-Leu-Cys-Ile-Ala-Cys-Pro-Cys-Ser-Lys-CONH(2)), part of the sixth metal binding domain (WD6) and the sixth transmembrane segment (TM6) of Wilson ATPase, respectively, by means of CD, NMR spectroscopy and homology modeling. In addition, the interaction of Cu(I) with the 2K8p mutants 1s (CH(3)CO-Lys-Leu-Ser-Ile-Ala-Cys-Pro-Cys-Ser-Lys-CONH(2)), 2s (CH(3)CO-Lys-Leu-Cys-Ile-Ala-Ser-Pro-Cys-Ser-Lys-CONH(2)) and 3s (CH(3)CO-Lys-Leu-Cys-Ile-Ala-Cys-Pro-Ser-Ser-Lys-CONH(2)), containing two cysteines in various positions, have been studied with the same methods, in order to understand the role of each cysteine in copper binding. Our studies show that the three cysteine thiolates present in the 2K8p peptide sequence act mainly as bridging ligands for Cu(I) binding, and dithiothreitol acts as an important ligand in Cu(I) ligation by 2K10p and the 2K8p mutants. Formation of oligomeric species has been evidenced for all peptides except 2s. Shift of the equilibrium between the various oligomeric species has been accomplished by reducing the Cu(I):peptide ratio. Significant shifts of proline protons upon interaction with Cu(I) have been observed for all proline containing peptides implying a possible role of proline in facilitating Cu(I) binding. These findings have been further discussed with respect to the molecular basis of copper trafficking and intermolecular interactions.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , ATPasas Transportadoras de Cobre , Ditiotreitol/farmacología , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína , Relación Estructura-Actividad
5.
J Bioenerg Biomembr ; 34(5): 339-49, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12539961

RESUMEN

Wilson disease is an autosomal recessive disorder of copper metabolism. The gene for this disorder has been cloned and identified to encode a copper-transporting ATPase (ATP7B), a member of a large family of cation transporters, the P-type ATPases. In addition to the core elements common to all P-type ATPases, the Wilson copper-transporting ATPase has a large cytoplasmic N-terminus comprised six heavy metal associated (HMA) domains, each of which contains the copper-binding sequence motif GMT/HCXXC. Extensive studies addressing the functional, regulatory, and structural aspects of heavy metal transport by heavy metal transporters in general, have offered great insights into copper transport by Wilson copper-transporting ATPase. The findings from these studies have been used together with homology modeling of the Wilson disease copper-transporting ATPases based on the X-ray structure of the sarcoplasmic reticulum (SR) calcium-ATPase, to present a hypothetical model of the mechanism of copper transport by copper-transporting ATPases.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Degeneración Hepatolenticular/genética , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Sitios de Unión , ATPasas Transportadoras de Calcio/química , Proteínas de Transporte de Catión/química , ATPasas Transportadoras de Cobre , Degeneración Hepatolenticular/enzimología , Humanos , Cinética , Modelos Moleculares , Estructura Secundaria de Proteína , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA