Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296462

RESUMEN

Photocatalysis has been recognized as a feasible method in water and wastewater treatment. Compared to other methods such as adsorption and chemical oxidation, the use of photocatalyst in the advanced oxidation processes gives benefits such as a longer lifetime of the catalyst and less consumable chemicals. Currently, explorations into low-cost, effective photocatalysts for organic contaminated water are being developed. Within this scheme, an easily separated photocatalyst with other functionality, such as high adsorption, is important. In this research, preparation of a magnetic nanocomposite photocatalyst based on agricultural waste, palm leaves biochar impregnated nickel nanoparticles (Ni/BC), was investigated. The nanocomposite was prepared by direct pyrolysis of palm leaves impregnated with nickel (II) chloride precursor. Furthermore, the physicochemical characterization of the material was performed by using an X-ray diffractometer (XRD), scanning electron microscopy-energy dispersive X-ray fluorescence (SEM-EDX), transmission electron microscopy (TEM), gas sorption analysis, X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The photocatalytic activity of Ni/BC was evaluated for methyl violet (MV) photocatalytic oxidation. The results from XRD, XPS and TEM analyses identified single nickel nanoparticles dispersed on the biochar structure ranging from 30-50 nm in size. The dispersed nickel nanoparticles increased the BET specific surface area of biochar from 3.92 m2/g to 74.12 m2/g oxidation. High photocatalytic activity of the Ni/BC was exhibited by complete MV removal in 30 min for the concentration ranging from 10-80 mg/L. In addition, the Ni/BC showed stability in the pH range of 4-10 and reusability without any activity change until fifth usage. The separable photocatalyst is related to magnetism of about 13.7 emu/g. The results highlighted the role of biochar as effective support for Ni as photoactive material.


Asunto(s)
Nanocompuestos , Nanopartículas , Níquel/química , Violeta de Genciana , Cloruros , Nanocompuestos/química , Agua , Fenómenos Magnéticos
2.
Artif Organs ; 45(12): 1501-1512, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34309044

RESUMEN

The primary role of bone tissue engineering is to reconcile the damaged bones and facilitate the speedy recovery of the injured bones. However, some of the investigated metallic implants suffer from stress-shielding, palpability, biocompatibility, etc. Consequently, the biodegradable scaffolds fabricated from polymers have gathered much attention from researchers and thus helped the tissue engineering sector by providing many alternative materials whose functionality is similar to that of natural bones. Herein, we present the fabrication and testing of a novel composite, magnesium (Mg)-doped hydroxyapatite (HAp) glazed onto polylactic acid (PLA) scaffolds where polyvinyl alcohol (PVA) used as a binder. For the composite formation, Creality Ender-3 pro High Precision 3D Printer with Shape tool 3D Technology on an FSD machine operated by Catia design software was employed. The composite has been characterized for the crystallinity (XRD), surface functionality (FTIR), morphology (FESEM), biocompatibility (hemolytic and protein absorption), and mechanical properties (stress-strain and maximum compressive strength). The powder XRD analysis confirmed the semicrystalline nature and intact structure of HAp even after doping with Mg, while FTIR studies for the successful formation of Mg-HAp/PVA@PLA composite. The FESEM provided analysis indicated for the 3D porous architecture and well-defined morphology to efficiently transport the nutrients, and the biocompatibility studies are supporting that the composite for blood compatible with the surface being suitable enough for the protein absorption. Finally, the composite's antibacterial activity (against Staphylococcus aureus and Escherichia coli) and the test of mechanical properties supported for the enhanced inhibition of active growth of microorganisms and maximum compressive strength, respectively. Based on the research outcomes of biocompatibility, antibacterial activity, and mechanical resistance, the fabricated Mg-HAp/PVA@PLA composite suits well as a promising biomaterial platform for orthopedic applications by functioning towards the open reduction internal fixation of bone fractures and internal repairs.


Asunto(s)
Huesos , Poliésteres/química , Ingeniería de Tejidos/métodos , Andamios del Tejido , Durapatita/química , Escherichia coli/efectos de los fármacos , Hemólisis , Humanos , Magnesio/química , Ensayo de Materiales , Impresión Tridimensional , Staphylococcus aureus/efectos de los fármacos
3.
Molecules ; 26(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34443675

RESUMEN

In this study, a controlled-release formulation of duplex herbicides, namely, 2,4,5-trichlorophenoxybutyric acid (TBA) and 3,4-dichlorophenoxy-acetic acid (3,4D), was simultaneously embedded into Zn-Al-layered double hydroxides (LDHs). The resulting nanohybrid Zinc-Aluminium-3,4D-TBA (ZADTX) was composed of a well-ordered crystalline layered structure with increasing basal spacing from 8.9 Å to 20.0 Å in the Powder X-ray Diffraction (PXRD) with 3,4D and TBA anions located in the gallery of LDHs with bilayer arrangement. The release of 3,4D and TBA fit the pseudo-second-order model. This duplex nanohybrid possessed a well-controlled release property (53.4% release from TBA and 27.8% release from 3,4D), which was highly effective, requiring the use of a small quantity and, hence, environmentally safer.

4.
Recent Pat Nanotechnol ; 17(1): 68-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34126918

RESUMEN

BACKGROUND: Green synthesis method of nanoparticles has been developed for several years. Besides providing environmental-friendly process, green synthesis of nanoparticles using plant extract provides synergistic effect of the secondary metabolite in such antibiotic activity. The study with an intensification process in nanoparticles formation is also gaining great attention. This research deals with the green synthesis of silver nanoparticles using Datura metel flower extract for the antibacterial agent. The use of ultrasound-assisted method for the synthesis was investigated. METHODS: Synthesis of silver nanoparticles (AgNPs) using Datura metel flower extract under ultrasound- assisted method has been conducted. Evaluation of the successful synthesis was done using UV-visible spectrophotometry, particle size analyzer, x-ray diffraction, and transmission electron microscopy. The prepared AgNPs were tested as an antibacterial against S. aureus, K. pneumoniae, S. pyogenes, and E. coli. RESULTS: The ultrasound-assisted synthesis of AgNPs produces particles ranging from 25-70 nm in size; meanwhile, the reflux method demonstrated the size of 50-170 nm. These particles size represents the effect on the antibacterial activity as the ultrasound-assisted synthesized Ag NPs have higher inhibition zone towards all tested bacteria. Subsequently, these data presented the applicability of Ag NPs synthesis using an ultrasound method as a potential candidate for biomedical applications. CONCLUSION: The profile of UV-Visible spectra and particle size analyses demonstrated the applicability of the ultrasound technique to produce a smaller size of the nanoparticles with higher antibacterial activity.


Asunto(s)
Datura metel , Nanopartículas del Metal , Plata/farmacología , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Flores/metabolismo
5.
Heliyon ; 9(5): e16232, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37251879

RESUMEN

Highly-effective photocatalyst of NiO/g-C3N4 with was successfully synthesized by using phyto-mediated-synthesized nickel nanoparticles. The preparation was initiated by synthesizing nickel nanoparticles by using Tinosphora cordifolia stem extract under ultrasound-assisted method followed by the dispersing onto g-C3N4 structure. The study focused on physicochemical characterization and photocatalytic activity as function of the percentage of Ni in the nanocomposite. The photocatalytic activity examinations were carried out to rhodamine B and tetracycline photocatalytic oxidation. The results demonstrated that graphitic carbon nitride is effectively improved the photocatalytic activity of NiO for both photocatalytic oxidation reactions. From the varied Ni content of 5; 10; and 20 %wt., it was also found that the highest photoactivity was achieved by the composite having 10 %wt. of nickel content. The high effectivity was showed by degradation efficiency of 95% toward Rhodamine B and 98% toward tetracycline. The examination on effect of scavengers suggests that Z-scheme involved in the photocatalytic mechanism which facilitated the efficient separation of the photogenerated electron-hole pairs under visible light illumination. In summary, the present findings provide a green approach for fabricating the effective photocatalysts for organic contaminant degradation.

6.
Heliyon ; 9(3): e14434, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36950579

RESUMEN

The present work investigated hydrothermal synthesis of titanium/hydroxyapatite (Ti/HA) nanocomposite at varied Ti content. The synthesis was performed by coprecipitation method using CaO, ammonium dihydrogen phosphate and titanium oxide chloride precursor with the additional cetyl trimethyl ammonium chloride as templating agent, followed by hydrothermal treatment at 150 °C. The derived materials were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy analyses. The photocatalytic properties of materials were tested on methyl violet (MV) photocatalytic oxidation, meanwhile the antibacterial testing was performed against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Streptococcus pyogenes. In addition, cytotoxicity evaluation of the materials as potential biomaterial was also conducted. The results showed that physicochemical character of Ti/HA exhibits exhibit the excellent properties to be photocatalyst along with antibacterial activity. From the detail study of effect of varied titanium content ranging from 5 to 10 %wt., the increasing crystallite size of anatase phase of about 25.81 nm and 38.22 nm for Ti content of 5 and 10 % wt., respectively. In other side, the band gap energy value increases as the increasing Ti content, i.e. the values are 3.08; 3.18; and 3.20 eV for Ti content of 5, 10, 20 % wt., respectively. The band gap energy is correlated with the photocatalytic activity which the highest MV degradation was 96.46% over Ti/HA with 20% wt. of Ti (Ti20/HA). The nanocomposites also express the antibacterial activity with comparable minimum inhibitory concentration (MIC) with other similar Ti/HA nanocomposites. The MIC values of Ti20/HA against E. coli, S. aureus, K. pneumonia, and S. pyogenes are 25; 25; 50 and 50 µg/mL, respectively. In addition, the cytotoxicity test revealed the potency to be a biomimetic material as shown by severe toxicity.

7.
Nanomaterials (Basel) ; 12(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269318

RESUMEN

Advanced oxidation processes (AOPs) utilizing heterogeneous catalysts have attracted great attention in the last decade. The use of solid catalysts, including metal and metal oxide nanoparticle support materials, exhibited better performance compared with the use of homogeneous catalysts, which is mainly related to their stability in hostile environments and recyclability and reusability. Various solid supports have been reported to enhance the performance of metal and metal oxide catalysts for AOPs; undoubtedly, the utilization of clay as a support is the priority under consideration and has received intensive interest. This review provides up-to-date progress on the synthesis, features, and future perspectives of clay-supported metal and metal oxide for AOPs. The methods and characteristics of metal and metal oxide incorporated into the clay structure are strongly influenced by various factors in the synthesis, including the kind of clay mineral. In addition, the benefits of nanomaterials from a green chemistry perspective are key aspects for their further considerations in various applications. Special emphasis is given to the basic schemes for clay modifications and role of clay supports for the enhanced mechanism of AOPs. The scaling-up issue is suggested for being studied to further applications at industrial scale.

8.
Heliyon ; 8(11): e11451, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36406724

RESUMEN

The combination of electro-enhanced and hydroponic phytoremediation hereinafter referred to as electro-enhanced phytoremediation (EP) system, has been employed for rapid removal of trace metal concentration of lead (II) from contaminated water using Kentucky bluegrass (Poa pratensis L.) as accumulator plant. In this study, for rapid assessment the effectiveness of two-dimensional (2D) electrode configuration in electro-enhanced system was evaluated by agar media for 48h period of time. Furthermore, these configurations were applied to enhance the EP system for 9d period of time. Also, a common agrochemical-urea as chaotropic agent to facilitate the healthy growth of plant in contaminated water was evaluated. The results showed that the accumulation of lead (II) concentration was higher in the plant roots (i.e. high bioaccumulation coefficient (BC) value) than in aerial parts of plant (i.e. low translocation factor (TF) value). Also, the accumulation of lead (II) concentration in plant was higher under the treated urea of EP system. The chlorophyll content, biomass accumulation productivity, and water content (i.e. dry weight-fresh weight (DW/FW) ratio) of plant either under the treated urea or untreated urea with high accumulation of lead (II) concentration revealed that the Kentucky bluegrass has able to hold out the plant stress.

9.
J Funct Biomater ; 13(2)2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35735939

RESUMEN

Preparation of green synthesized silver nanoparticle (AgNPs)-doped hydroxyapatite (Ag/HA) utilizing Curcuma longa leaf extract and land snail (Achatina fulica) shell waste was performed. Physicochemical characteristics and antibacterial activity of Ag/HA composite as a function of Ag content was studied. Instrumental analysis such as XRD, SEM-EDX, TEM, and XPS were employed to characterize the nanocomposites. The physicochemical study revealed the maintained porous structure of HA after Ag immobilization, and from TEM analyses, it was found that the distributed spherical particles are associated with the dispersed Ag and have a particle diameter of around 5-25 nm. Antibacterial activity of the nanocomposite was evaluated against Escherichia coli, Staphylococcus aureus, Kliebsiella, pneumonia, and Streptococcus pyogenes. The results showed that the varied Ag content (1.0; 1.6; and 2.4% wt) influenced the nanoparticle distribution in the nanocomposite and enhanced the antibacterial feature.

10.
Materials (Basel) ; 15(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36013704

RESUMEN

Zirconium porous clay heterostructures (Zr-PCH) were synthesized using intercalated clay minerals by zirconium species with different contents of zirconium. The presence of zirconium and silica species was confirmed by X-ray diffraction, X-ray fluorescence, and magic-angle spinning nuclear magnetic resonance. The insertion of zirconium improved the thermal stability, the specific surface area with a maximum of 950 m2/g, and the acidity concentration of 0.993 mol of protons per g of solid. These materials were used to adsorb the basic blue-41 from aqueous solution. The adsorption efficiency was examined at different conditions, with a maximum adsorbed amount of 346 mg/g as estimated from Langmuir model. This value was dependent on zirconium content in the PCHs. The adsorption process was found to be favorable and spontaneous. The efficiency of the spent materials was maintained after five reuse cycles with a decrease by 15% of the original value for a particular Zr-PCH material with a Zr content of 6.82%. Single stage batch adsorber was suggested using the mass balance equation and Langmuir isotherm model. The amount of PCH materials required depended on the target percentage of adsorption at specific volume and initial concentration of the basic-blue-41 dye solution.

11.
Nanomaterials (Basel) ; 12(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35630872

RESUMEN

Zn-Al Layered Double Hydroxides (Zn-Al LDHs) and its calcined form were successfully prepared and utilized for the removal of methyl violet (MV) and treatment of peat water by photocatalytic oxidation. The research was aimed to evaluate the effect of calcination to Zn-Al LDHs for the effect on the physicochemical character and the capability as a photocatalyst. The characterization of the samples was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmet-Teller specific surface area (BET), and X-ray photoelectron spectroscopy (XPS). The results showed that the increased BET specific surface area along with the enhanced porous structure was achieved by the calcination procedure, which is associated with the enhanced interlayer space of d003 identified by XRD analysis. Thermal conversion showed an influence to the increased band gap energy from 3.10 eV in the uncalcined Zn-Al LDHs into 3.16 eV for the calcined material. These character changes contributed to the enhanced photocatalytic activity of the Zn-AL LDHs by calcination, which was proposed and verified by experiments. It was observed that photocatalytic activity of the material for MV gave about a 45.57% removal of MV and a 68% removal for the natural organic material of the peat water.

12.
Nanomaterials (Basel) ; 11(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34947775

RESUMEN

In this work, photoactive nanocomposites of ZnO/SiO2 porous heterostructures (PCHs) were prepared from montmorillonite clay. The effects of preparation methods and Zn content on the physicochemical features and photocatalytic properties were investigated. Briefly, a comparison of the use of hydrothermal and microwave-assisted methods was done. The Zn content was varied between 5 and 15 wt% and the characteristics of the nanomaterials were also examined. The physical and chemical properties of the materials were characterized using X-ray diffraction, diffuse-reflectance UV-Vis, X-ray photoelectron spectroscopy, and gas sorption analyses. The morphology of the synthesized materials was characterized through scanning electron microscopy and transmission electron microscopy. The photocatalytic performance of the prepared materials was quantified through the photocatalytic degradation of methyl violet (MV) under irradiation with UV and visible light. It was found that PCHs exhibit greatly improved physicochemical characteristics as photocatalysts, resulting in boosting photocatalytic activity for the degradation of MV. It was found that varied synthesis methods and Zn content strongly affected the specific surface area, pore distribution, and band gap energy of PCHs. In addition, the band gap energy was found to govern the photoactivity. Additionally, the surface parameters of the PCHs were found to contribute to the degradation mechanism. It was found that the prepared PCHs demonstrated excellent photocatalytic activity and reusability, as seen in the high degradation efficiency attained at high concentrations. No significant changes in activity were seen until five cycles of photodegradation were done.

13.
Nanomaterials (Basel) ; 11(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34835776

RESUMEN

The present study reported biofabrication of flower-like SnO2 nanoparticles using Pometia pinnata leaf extract. The study focused on the physicochemical characteristics of the prepared SnO2 nanoparticles and its activity as photocatalyst and antibacterial agent. The characterization was performed by XRD, SEM, TEM, UV-DRS and XPS analyses. Photocatalytic activity of the nanoparticles was examined on bromophenol blue photooxidation; meanwhile, the antibacterial activity was evaluated against Klebsiella pneumoniae, Escherichia coli Staphylococcus aureus and Streptococcus pyogenes. XRD and XPS analyses confirmed the single tetragonal SnO2 phase. The result from SEM analysis indicates the flower like morphology of SnO2 nanoparticles, and by TEM analysis, the nanoparticles were seen to be in uniform spherical shapes with a diameter ranging from 8 to 20 nm. SnO2 nanoparticles showed significant photocatalytic activity in photooxidation of bromophenol blue as the degradation efficiency reached 99.93%, and the photocatalyst exhibited the reusability as the degradation efficiency values were insignificantly changed until the fifth cycle. Antibacterial assay indicated that the synthesized SnO2 nanoparticles exhibit an inhibition of tested bacteria and showed a potential to be applied for further environmental and medical applications.

14.
Water Sci Technol ; 62(5): 1177-82, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20818062

RESUMEN

An agricultural waste derived adsorbent was prepared by chemically modified barley straw with NaOH and a cationic surfactant hexadecylpyridinium chloride monohydrate (CPC). The prepared adsorbent, BMBS, was used for removal of anionic dyes; Acid Blue (AB40) and Reactive Blue 4 (RB4) from aqueous solution in a batch adsorption system. The adsorbent was characterized by FT-IR and elemental composition. The stability of CPC adsorbed on straw surface was also evaluated by exposing to aqueous solution. In adsorption tests, influence of operation parameters such as contact time, initial concentration and pH of solution on AB40 and RB4 uptake were investigated and discussed. The CPC was observed strongly attached to straw surface and removal percentage of AB40 and RB4 was increased with increasing in contact time. The adsorption of dyes on modified straw surface was favorable at high acidic condition and desorption was found relatively low upon exposing to the desorption agent (i.e water). Dynamic experiment revealed that the kinetic data fitted well to the pseudo-second-order model for both of the dyes. The isotherm study also indicated that RB4 and AB40 adsorption suited well with the Langmuir model, The maximum adsorption capacity determined from the Langmuir isotherm at 25 degrees C was 51.95 mg g(-1) and 31.5 for AB40 and RB4, respectively.


Asunto(s)
Aniones , Colorantes/química , Tallos de la Planta/química , Contaminantes Químicos del Agua/química , Agua/química , Adsorción , Cetilpiridinio/química , Hordeum , Tensoactivos/química , Purificación del Agua
15.
Heliyon ; 5(11): e02766, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31844705

RESUMEN

In this work, TiO2/SiO2 composite photocatalysts were prepared using biogenic silica extracted from bamboo leaves and titanium tetraisopropoxide as a titania precursor via a sol-gel mechanism. A study of the physicochemical properties of materials as a function of their titanium dioxide content was conducted using Fourier transform infrared spectroscopy, a scanning electron microscope, a diffuse reflectance ultraviolet-visible (UV-vis) spectrophotometer, and a gas sorption analyzer. The relationship between physicochemical parameters and photocatalytic performance was evaluated using the methylene blue (MB) photocatalytic degradation process under UV irradiation with and without the addition of H2O2 as an oxidant. The results demonstrated that increasing the TiO2 helps enhance the parameters of specific surface area, the pore volume, and the particle size of titanium dioxide, while the band gap energy reaches a maximum of 3.21 eV for 40% and 60% Ti content. The composites exhibit photocatalytic activity with the MB degradation with increasing photocatalytic efficiency since the composites with 40 and 60% wt. of TiO2 demonstrated the higher degradation rate compared with TiO2 in the presence and absence of H2O2. This higher rate is correlated with the higher specific surface area and band gap energy compared with those of TiO2.

16.
J Adv Res ; 7(6): 961-969, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27857843

RESUMEN

This paper reports an investigation of the microwave-assisted synthesis of silver nanoparticles (Ag NPs) using extract of stinky bean (Parkia speciosa Hassk) pods (BP). The formation of Ag NPs was identified by instrumental analysis consists of UV-vis spectrophotometry, Fourier-transform infrared (FTIR) spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and particle size analysis. Furthermore, Ag NPs were used as antibacterial agents against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results indicate rapid formation of Ag NPs during microwave irradiation with similar properties to those obtained through the aging method. In general, the use of microwave irradiation yields larger particles, and it is affected by volume ratio of the extract to the AgNO3 solution. The prepared materials demonstrated antibacterial activity.

17.
J Adv Res ; 5(6): 663-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25685535

RESUMEN

Zirconium dispersed in aluminum-pillared montmorillonite was prepared as a catalyst for phenol hydroxylation. The effects of varying the Zr content on the catalyst's physicochemical character and activity were studied with XRD, BET surface area analysis, surface acidity measurements and scanning electron microscopy before investigating the performance for phenol conversion. The zirconia dispersion significantly affects the specific surface area, the total surface acidity and surface acidity distribution related to the formation of porous zirconia particles on the surface. The prepared samples exhibited excellent catalytic activity during phenol hydroxylation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA