Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(15): 8315-8325, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32217737

RESUMEN

Motile cilia are widespread across the animal and plant kingdoms, displaying complex collective dynamics central to their physiology. Their coordination mechanism is not generally understood, with previous work mainly focusing on algae and protists. We study here the entrainment of cilia beat in multiciliated cells from brain ventricles. The response to controlled oscillatory external flows shows that flows at a similar frequency to the actively beating cilia can entrain cilia oscillations. We find that the hydrodynamic forces required for this entrainment strongly depend on the number of cilia per cell. Cells with few cilia (up to five) can be entrained at flows comparable to cilia-driven flows, in contrast with what was recently observed in Chlamydomonas Experimental trends are quantitatively described by a model that accounts for hydrodynamic screening of packed cilia and the chemomechanical energy efficiency of the flagellar beat. Simulations of a minimal model of cilia interacting hydrodynamically show the same trends observed in cilia.


Asunto(s)
Cilios/fisiología , Mamíferos/fisiología , Animales , Encéfalo/fisiología , Chlamydomonas/química , Chlamydomonas/fisiología , Hidrodinámica , Modelos Biológicos
2.
Development ; 144(2): 201-210, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993979

RESUMEN

Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.


Asunto(s)
Ventrículos Cerebrales/embriología , Cilios/fisiología , Morfogénesis , Complejos Multiproteicos/fisiología , Neurogénesis/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Polaridad Celular/efectos de los fármacos , Ventrículos Cerebrales/efectos de los fármacos , Ventrículos Cerebrales/metabolismo , Cilios/efectos de los fármacos , Embrión de Mamíferos , Femenino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Embarazo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
3.
J Exp Biol ; 223(Pt 24)2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33376093

RESUMEN

In many organs, thousands of microscopic 'motile cilia' beat in a coordinated fashion generating fluid flow. Physiologically, these flows are important in both development and homeostasis of ciliated tissues. Combining experiments and simulations, we studied how cilia from brain tissue align their beating direction. We subjected cilia to a broad range of shear stresses, similar to the fluid flow that cilia themselves generate, in a microfluidic setup. In contrast to previous studies, we found that cilia from mouse ependyma respond and align to these physiological shear stress at all maturation stages. Cilia align more easily earlier in maturation, and we correlated this property with the increase in multiciliated cell density during maturation. Our numerical simulations show that cilia in densely packed clusters are hydrodynamically screened from the external flow, in agreement with our experimental observation. Cilia carpets create a hydrodynamic screening that reduces the susceptibility of individual cilia to external flows.


Asunto(s)
Encéfalo , Cilios , Animales , Hidrodinámica , Ratones , Estrés Mecánico
4.
Nature ; 516(7529): 104-7, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25307055

RESUMEN

The semi-conservative centrosome duplication in cycling cells gives rise to a centrosome composed of a mother and a newly formed daughter centriole. Both centrioles are regarded as equivalent in their ability to form new centrioles and their symmetric duplication is crucial for cell division homeostasis. Multiciliated cells do not use the archetypal duplication program and instead form more than a hundred centrioles that are required for the growth of motile cilia and the efficient propelling of physiological fluids. The majority of these new centrioles are thought to appear de novo, that is, independently from the centrosome, around electron-dense structures called deuterosomes. Their origin remains unknown. Using live imaging combined with correlative super-resolution light and electron microscopy, we show that all new centrioles derive from the pre-existing progenitor cell centrosome through multiple rounds of procentriole seeding. Moreover, we establish that only the daughter centrosomal centriole contributes to deuterosome formation, and thus to over ninety per cent of the final centriole population. This unexpected centriolar asymmetry grants new perspectives when studying cilia-related diseases and pathological centriole amplification observed in cycling cells and associated with microcephaly and cancer.


Asunto(s)
Centriolos/fisiología , Centrosoma/fisiología , Cilios/fisiología , Animales , Células Cultivadas , Centriolos/ultraestructura , Centrosoma/ultraestructura , Cilios/ultraestructura , Ratones , Microscopía Electrónica de Transmisión
5.
Dev Cell ; 58(23): 2641-2651.e6, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37890489

RESUMEN

Choroid plexuses (ChPs) produce cerebrospinal fluid and sense non-cell-autonomous stimuli to control the homeostasis of the central nervous system. They are mainly composed of epithelial multiciliated cells, whose development and function are still controversial. We have thus characterized the stepwise order of mammalian ChP epithelia cilia formation using a combination of super-resolution-microscopy approaches and mouse genetics. We show that ChP ciliated cells are built embryonically on a treadmill of spatiotemporally regulated events, starting with atypical centriole amplification and ending with the construction of nodal-like 9+0 cilia, characterized by both primary and motile features. ChP cilia undergo axoneme resorption at early postnatal stages through a microtubule destabilization process controlled by the microtubule-severing enzyme spastin and mitigated by polyglutamylation levels. Notably, this phenotype is preserved in humans, suggesting a conserved ciliary resorption mechanism in mammals.


Asunto(s)
Axonema , Cilios , Humanos , Ratones , Animales , Cilios/fisiología , Células Epiteliales/fisiología , Epitelio , Coroides , Mamíferos
6.
Cell Rep ; 41(11): 111810, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516767

RESUMEN

Multiciliated ependymal cells and adult neural stem cells are components of the adult neurogenic niche, essential for brain homeostasis. These cells share a common glial cell lineage regulated by the Geminin family members Geminin and GemC1/Mcidas. Ependymal precursors require GemC1/Mcidas expression to massively amplify centrioles and become multiciliated cells. Here, we show that GemC1-dependent differentiation is initiated in actively cycling radial glial cells, in which a DNA damage response, including DNA replication-associated damage and dysfunctional telomeres, is induced, without affecting cell survival. Genotoxic stress is not sufficient by itself to induce ependymal cell differentiation, although the absence of p53 or p21 in progenitors hinders differentiation by maintaining cell division. Activation of the p53-p21 pathway downstream of GemC1 leads to cell-cycle slowdown/arrest, which permits timely onset of ependymal cell differentiation in progenitor cells.


Asunto(s)
Células-Madre Neurales , Proteína p53 Supresora de Tumor , Geminina/genética , Geminina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Epéndimo/metabolismo , Células Ependimogliales/metabolismo , Células-Madre Neurales/metabolismo , Diferenciación Celular
7.
Nat Commun ; 12(1): 1351, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649372

RESUMEN

Exon junction complexes (EJCs) mark untranslated spliced mRNAs and are crucial for the mRNA lifecycle. An imbalance in EJC dosage alters mouse neural stem cell (mNSC) division and is linked to human neurodevelopmental disorders. In quiescent mNSC and immortalized human retinal pigment epithelial (RPE1) cells, centrioles form a basal body for ciliogenesis. Here, we report that EJCs accumulate at basal bodies of mNSC or RPE1 cells and decline when these cells differentiate or resume growth. A high-throughput smFISH screen identifies two transcripts accumulating at centrosomes in quiescent cells, NIN and BICD2. In contrast to BICD2, the localization of NIN transcripts is EJC-dependent. NIN mRNA encodes a core component of centrosomes required for microtubule nucleation and anchoring. We find that EJC down-regulation impairs both pericentriolar material organization and ciliogenesis. An EJC-dependent mRNA trafficking towards centrosome and basal bodies might contribute to proper mNSC division and brain development.


Asunto(s)
Centrosoma/metabolismo , Cilios/metabolismo , Exones/genética , Transporte de ARN , ARN Mensajero/metabolismo , Animales , Autoantígenos/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Proteínas del Citoesqueleto/metabolismo , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo
8.
Sci Rep ; 9(1): 13060, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506528

RESUMEN

Reproductive and respiratory organs, along with brain ventricles, are lined by multiciliated epithelial cells (MCC) that generate cilia-powered fluid flows. MCC hijack the centrosome duplication pathway to form hundreds of centrioles and nucleate motile cilia. In these cells, the large majority of procentrioles are formed associated with partially characterized organelles called deuterosomes. We recently challenged the paradigm that deuterosomes and procentrioles are formed de novo by providing data, in brain MCC, suggesting that they are nucleated from the pre-existing centrosomal younger centriole. However, the origin of deuterosomes and procentrioles is still under debate. Here, we further question centrosome importance for deuterosome and centriole amplification. First, we provide additional data confirming that centriole amplification occurs sequentially from the centrosomal region, and that the first procentriole-loaded deuterosomes are associated with the daughter centriole or in the centrosomal centriole vicinity. Then, to further test the requirement of the centrosome in deuterosome and centriole formation, we depleted centrosomal centrioles using a Plk4 inhibitor. We reveal unexpected limited consequences in deuterosome/centriole number in absence of centrosomal centrioles. Notably, in absence of the daughter centriole only, deuterosomes are not seen associated with the mother centriole. In absence of both centrosomal centrioles, procentrioles are still amplified sequentially and with no apparent structural defects. They seem to arise from a focal region, characterized by microtubule convergence and pericentriolar material (PCM) assembly. The relevance of deuterosome association with the daughter centriole as well as the role of the PCM in the focal and sequential genesis of centrioles in absence of centrosomal centrioles are discussed.


Asunto(s)
Encéfalo/fisiología , Centriolos/metabolismo , Centrosoma/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Biomarcadores , Ciclo Celular , Técnica del Anticuerpo Fluorescente , Humanos , Imagen Molecular , Orgánulos/metabolismo
9.
Neuron ; 102(1): 159-172.e7, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30824354

RESUMEN

Adult neural stem cells and multiciliated ependymal cells are glial cells essential for neurological functions. Together, they make up the adult neurogenic niche. Using both high-throughput clonal analysis and single-cell resolution of progenitor division patterns and fate, we show that these two components of the neurogenic niche are lineally related: adult neural stem cells are sister cells to ependymal cells, whereas most ependymal cells arise from the terminal symmetric divisions of the lineage. Unexpectedly, we found that the antagonist regulators of DNA replication, GemC1 and Geminin, can tune the proportion of neural stem cells and ependymal cells. Our findings reveal the controlled dynamic of the neurogenic niche ontogeny and identify the Geminin family members as key regulators of the initial pool of adult neural stem cells.


Asunto(s)
Astrocitos/citología , Epéndimo/citología , Células Ependimogliales/citología , Células-Madre Neurales/citología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Astrocitos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Linaje de la Célula , Replicación del ADN , Electroporación , Embrión de Mamíferos , Células Ependimogliales/metabolismo , Geminina/metabolismo , Ratones , Células-Madre Neurales/metabolismo
10.
Nat Commun ; 9(1): 2279, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891944

RESUMEN

Multiciliated ependymal cells line all brain cavities. The beating of their motile cilia contributes to the flow of cerebrospinal fluid, which is required for brain homoeostasis and functions. Motile cilia, nucleated from centrioles, persist once formed and withstand the forces produced by the external fluid flow and by their own cilia beating. Here, we show that a dense actin network around the centrioles is induced by cilia beating, as shown by the disorganisation of the actin network upon impairment of cilia motility. Moreover, disruption of the actin network, or specifically of the apical actin network, causes motile cilia and their centrioles to detach from the apical surface of ependymal cell. In conclusion, cilia beating controls the apical actin network around centrioles; the mechanical resistance of this actin network contributes, in turn, to centriole stability.


Asunto(s)
Actinas/fisiología , Centriolos/fisiología , Cilios/fisiología , Epéndimo/fisiología , Actinas/química , Animales , Fenómenos Biomecánicos , Proteínas del Citoesqueleto , Epéndimo/crecimiento & desarrollo , Epéndimo/ultraestructura , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Microfilamentos , Modelos Neurológicos , Mapas de Interacción de Proteínas , Proteínas/genética , Proteínas/metabolismo
11.
Science ; 358(6364): 803-806, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28982797

RESUMEN

Cell division and differentiation depend on massive and rapid organelle remodeling. The mitotic oscillator, centered on the cyclin-dependent kinase 1-anaphase-promoting complex/cyclosome (CDK1-APC/C) axis, spatiotemporally coordinates this reorganization in dividing cells. Here we discovered that nondividing cells could also implement this mitotic clocklike regulatory circuit to orchestrate subcellular reorganization associated with differentiation. We probed centriole amplification in differentiating mouse-brain multiciliated cells. These postmitotic progenitors fine-tuned mitotic oscillator activity to drive the orderly progression of centriole production, maturation, and motile ciliation while avoiding the mitosis commitment threshold. Insufficient CDK1 activity hindered differentiation, whereas excessive activity accelerated differentiation yet drove postmitotic progenitors into mitosis. Thus, postmitotic cells can redeploy and calibrate the mitotic oscillator to uncouple cytoplasmic from nuclear dynamics for organelle remodeling associated with differentiation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteína Quinasa CDC2/metabolismo , Cilios/fisiología , Mitosis , Animales , Encéfalo/citología , Diferenciación Celular , Centriolos/metabolismo , Ratones , Orgánulos/metabolismo
12.
Methods Cell Biol ; 127: 19-35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25837384

RESUMEN

Primary and motile cilia differ in their structure, composition, and function. In the brain, primary cilia are immotile signalling organelles present on neural stem cells and neurons. Multiple motile cilia are found on the surface of ependymal cells in all brain ventricles, where they contribute to the flow of cerebrospinal fluid. During development, monociliated ependymal progenitor cells differentiate into multiciliated ependymal cells, thus providing a simple system for studying the transition between these two stages. In this chapter, we provide protocols for immunofluorescence staining of developing ependymal cells in vivo, on whole mounts of lateral ventricle walls, and in vitro, on cultured ependymal cells. We also provide a list of markers we currently use to stain both types of cilia, including proteins at the ciliary membrane and tubulin posttranslational modifications of the axoneme.


Asunto(s)
Cilios/fisiología , Epéndimo/citología , Células Ependimogliales/citología , Ventrículos Laterales/citología , Células-Madre Neurales/citología , Antígeno AC133 , Factores de Ribosilacion-ADP/fisiología , Adenilil Ciclasas/fisiología , Animales , Antígenos CD , Biomarcadores , Antígeno CD24 , Diferenciación Celular , Células Cultivadas , Epéndimo/fisiología , Epéndimo/cirugía , Glicoproteínas , Inmunohistoquímica , Ventrículos Laterales/fisiología , Ventrículos Laterales/cirugía , Ratones , Péptidos , Cultivo Primario de Células/métodos , Coloración y Etiquetado/métodos , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA