Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 72(8): 1585-97, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25336152

RESUMEN

Poly(ADP-ribose) polymerase-2 (PARP-2) activity contributes to a cells' poly(ADP-ribosyl)ating potential and like PARP-1, has been implicated in several DNA repair pathways including base excision repair and DNA single strand break repair. Here the consequences of its stable depletion in HeLa, U20S, and AS3WT2 cells were examined. All three PARP-2 depleted models showed increased sensitivity to the cell killing effects on ionizing radiation as reported in PARP-2 depleted mouse embryonic fibroblasts providing further evidence for a role in DNA strand break repair. The PARP-2 depleted HeLa cells also showed both higher constitutive and DNA damage-induced levels of polymers of ADP-ribose (PAR) associated with unchanged PARP-1 protein levels, but higher PARP activity and a concomitant lower PARG protein levels and activity. These changes were accompanied by a reduced maximal recruitment of PARP-1, XRCC1, PCNA, and PARG to DNA damage sites. This PAR-associated phenotype could be reversed in HeLa cells on re-expression of PARP-2 and was not seen in U20S and AS3WT2 cells. These results highlight the complexity of the relationship between different members of the PARP family on PAR metabolism and suggest that cell model dependent phenotypes associated with the absence of PARP-2 exist within a common background of radiation sensitivity.


Asunto(s)
Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Células HeLa , Humanos , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Radiación Ionizante , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
2.
Carcinogenesis ; 35(12): 2706-15, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25269805

RESUMEN

G-quadruplex (G4) structures in intron 3 of the p53 pre-mRNA modulate intron 2 splicing, altering the balance between the fully spliced p53 transcript (FSp53, encoding full-length p53) and an incompletely spliced transcript retaining intron 2 (p53I2 encoding the N-terminally truncated Δ40p53 isoform). The nucleotides forming G4s overlap the polymorphism rs17878362 (A1 wild-type allele, A2 16-base pair insertion) which is in linkage disequilibrium with rs1642785 in intron 2 (c.74+38 G>C). Biophysical and biochemical analyses show rs17878362 A2 alleles form similar G4 structures as A1 alleles although their position is shifted with respect to the intron 2 splice acceptor site. In addition basal FSp53 and p53I2 levels showed allele specific differences in both p53-null cells transfected with reporter constructs or lymphoblastoid cell lines. The highest FSp53 and p53I2 levels were associated with combined rs1642785-GG/rs17878362-A1A1 alleles, whereas the presence of rs1642785-C with either rs17878362 allele was associated with lower p53 pre-mRNA, total TP53, FSp53 and p53I2 levels, due to the lower stability of transcripts containing rs1642785-C. Treatment of lymphoblastoid cell with the G4 binding ligands 360A or PhenDC3 or with ionizing radiation increased FSp53 levels only in cells with rs17878362 A1 alleles, suggesting that under this G4 configuration full splicing is favoured. These results demonstrate the complex effects of intronic TP53 polymorphisms on G4 formation and identify a new role for rs1642785 on mRNA splicing and stability, and thus on the differential expression of isoform-specific transcripts of the TP53 gene.


Asunto(s)
Adenocarcinoma/genética , Empalme Alternativo/genética , Neoplasias de la Mama/genética , G-Cuádruplex/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Intrones/genética , Polimorfismo Genético/genética , Proteína p53 Supresora de Tumor/genética , Adenocarcinoma/patología , Adenocarcinoma/radioterapia , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Exones , Femenino , Genotipo , Humanos , Isoformas de Proteínas , ARN Mensajero/genética , Radiación Ionizante , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
3.
BMC Cancer ; 14: 603, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25139788

RESUMEN

BACKGROUND: Hepatocellular carcinoma is the third cause of cancer related death for which new treatment strategies are needed. Targeting DNA repair pathways to sensitize tumor cells to chemo- or radiotherapy is under investigation for the treatment of several cancers with poly(ADP-ribose) polymerase (PARP) inhibitors showing great potential. The aim of this preclinical study was to evaluate the expression of PARP and PARG genes in a panel of liver cancer cell lines and primary human hepatocytes, their DNA repair capacity and assess the impact on cell survival of PARP inhibitors alone and in combination with radiotherapy. METHODS: Quantitative PCR was used to measure PARP-1, -2, -3 and PARG mRNA levels and western blotting for PARP-1 protein expression and ADP-ribose polymer formation after exposure of cells to doxorubicin, a topoisomerase II poison. DNA repair capacity was assessed using an in vitro DNA lesion excision/synthesis assay and the effects on cell killing of the PARP inhibitor ABT-888 alone and in combination with ionizing radiation using clonogenic survival. RESULTS: Although a wide range in expression of the PARPs and PARG was found correlations between PARP-1 and PARP-2 mRNA levels and PARP-1 mRNA and protein levels were noted. However these expression profiles were not predictive of PARP activity in the different cell lines that also showed variability in excision/synthesis repair capacity. 4 of the 7 lines were sensitive to ABT-888 alone and the two lines tested showed enhanced radiosensitivity in the presence of ABT-888. CONCLUSIONS: PARP inhibitors combined with radiotherapy show potential as a therapeutic option for hepatocellular carcinoma.


Asunto(s)
Bencimidazoles/farmacología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Poli(ADP-Ribosa) Polimerasas/genética , Fármacos Sensibilizantes a Radiaciones/farmacología , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Células Hep G2 , Humanos , Neoplasias Hepáticas/terapia , Poli(ADP-Ribosa) Polimerasas/metabolismo , Radiación Ionizante
4.
Artículo en Inglés | MEDLINE | ID: mdl-38340776

RESUMEN

PURPOSE: The products of lipid peroxidation have been implicated in human diseases and aging. This prompted us to investigate the response to conventional (CONV) versus FLASH irradiation of oxylipins, a family of bioactive lipid metabolites derived from omega-3 or omega-6 polyunsaturated fatty acids through oxygen-dependent non-enzymatic as well as dioxygenase-mediated free radical reactions. METHODS AND MATERIALS: Ultrahigh performance liquid chromatography coupled to tandem mass spectrometry was used to quantify the expression of 37 oxylipins derived from eicosatetraenoic, eicosapentaenoic and docosahexaenoic acid in mouse lung and in normal or cancer cells exposed to either radiation modality under precise monitoring of the temperature and oxygenation. Among the 37 isomers assayed, 14-16 were present in high enough amount to enable quantitative analysis. The endpoints were the expression of oxylipins as a function of the dose of radiation, normoxia versus hypoxia, temperature and post-irradiation time. RESULTS: In normal, normoxic cells at 37°C radiation elicited destruction and neosynthesis of oxylipins acting antagonistically on a background subject to rapid remodeling by oxygenases. Neosynthesis was observed in the CONV mode only, in such a way that the level of oxylipins at 5 minutes after FLASH irradiation was 20-50% lower than in non-irradiated and CONV-irradiated cells. Hypoxia mitigated the differential CONV versus FLASH response in some oxylipins. These patterns were not reproduced in tumor cells. Depression of specific oxylipins following FLASH irradiation was observed in mouse lung at 5 min following irradiation, with near complete recovery in 24 hours and further remodeling at one week and two months post-irradiation. CONCLUSIONS: Down-regulation of oxylipins was a hallmark of FLASH irradiation specific of normal cells. Temperature effects suggest that this process occurs via diffusion-controlled, bimolecular recombination of a primary radical species upstream from peroxyl radical formation and evoke a major role of the membrane composition and fluidity in response to the FLASH modality.

5.
J Biol Inorg Chem ; 18(7): 815-30, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23917995

RESUMEN

Superoxide reductase (SOR) is a non-heme iron metalloenzyme that detoxifies superoxide radical in microorganisms. Its active site consists of an unusual non-heme Fe(2+) center in a [His4Cys1] square pyramidal pentacoordination, with the axial cysteine ligand proposed to be an essential feature in catalysis. Two NH peptide groups from isoleucine 118 and histidine 119 establish hydrogen bonds involving the sulfur ligand (Desulfoarculus baarsii SOR numbering). To investigate the catalytic role of these hydrogen bonds, the isoleucine 118 residue of the SOR from Desulfoarculus baarsii was mutated into alanine, aspartate, or serine residues. Resonance Raman spectroscopy showed that the mutations specifically induced an increase of the strength of the Fe(3+)-S(Cys) and S-Cß(Cys) bonds as well as a change in conformation of the cysteinyl side chain, which was associated with the alteration of the NH hydrogen bonding involving the sulfur ligand. The effects of the isoleucine mutations on the reactivity of SOR with O2 (•-) were investigated by pulse radiolysis. These studies showed that the mutations induced a specific increase of the pK a of the first reaction intermediate, recently proposed to be an Fe(2+)-O2 (•-) species. These data were supported by density functional theory calculations conducted on three models of the Fe(2+)-O2 (•-) intermediate, with one, two, or no hydrogen bonds involving the sulfur ligand. Our results demonstrated that the hydrogen bonds between the NH (peptide) and the cysteine ligand tightly control the rate of protonation of the Fe(2+)-O2 (•-) reaction intermediate to form an Fe(3+)-OOH species.


Asunto(s)
Cisteína , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Dominio Catalítico , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Oxidorreductasas/genética , Proteobacteria/enzimología , Teoría Cuántica
6.
Cell Mol Life Sci ; 69(6): 951-62, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21922195

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) has been identified as a determinant of sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Here, the consequences of its depletion on cell survival, PARP activity, the recruitment of base excision repair (BER) proteins to DNA damage sites, and overall DNA single-strand break (SSB) repair were investigated using isogenic HeLa stably depleted (KD) and Control cell lines. Synthetic lethality achieved by disrupting PARP activity in Cdk5-deficient cells was confirmed, and the Cdk5(KD) cells were also found to be sensitive to the killing effects of ionizing radiation (IR) but not methyl methanesulfonate or neocarzinostatin. The recruitment profiles of GFP-PARP-1 and XRCC1-YFP to sites of micro-irradiated Cdk5(KD) cells were slower and reached lower maximum values, while the profile of GFP-PCNA recruitment was faster and attained higher maximum values compared to Control cells. Higher basal, IR, and hydrogen peroxide-induced polymer levels were observed in Cdk5(KD) compared to Control cells. Recruitment of GFP-PARP-1 in which serines 782, 785, and 786, potential Cdk5 phosphorylation targets, were mutated to alanines in micro-irradiated Control cells was also reduced. We hypothesize that Cdk5-dependent PARP-1 phosphorylation on one or more of these serines results in an attenuation of its ribosylating activity facilitating persistence at DNA damage sites. Despite these deficiencies, Cdk5(KD) cells are able to effectively repair SSBs probably via the long patch BER pathway, suggesting that the enhanced radiation sensitivity of Cdk5(KD) cells is due to a role of Cdk5 in other pathways or the altered polymer levels.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Tolerancia a Radiación , Secuencia de Bases , Daño del ADN , Reparación del ADN , Células HeLa , Humanos , Datos de Secuencia Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas
7.
Nat Commun ; 14(1): 2445, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117166

RESUMEN

Radiation Induced Lung Injury (RILI) is one of the main limiting factors of thorax irradiation, which can induce acute pneumonitis as well as pulmonary fibrosis, the latter being a life-threatening condition. The order of cellular and molecular events in the progression towards fibrosis is key to the physiopathogenesis of the disease, yet their coordination in space and time remains largely unexplored. Here, we present an interactive murine single cell atlas of the lung response to irradiation, generated from C57BL6/J female mice. This tool opens the door for exploration of the spatio-temporal dynamics of the mechanisms that lead to radiation-induced pulmonary fibrosis. It depicts with unprecedented detail cell type-specific radiation-induced responses associated with either lung regeneration or the failure thereof. A better understanding of the mechanisms leading to lung fibrosis will help finding new therapeutic options that could improve patients' quality of life.


Asunto(s)
Lesión Pulmonar , Fibrosis Pulmonar , Traumatismos por Radiación , Neumonitis por Radiación , Femenino , Animales , Ratones , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , Neumonitis por Radiación/etiología , Neumonitis por Radiación/patología , Calidad de Vida , Pulmón/patología , Lesión Pulmonar/etiología , Lesión Pulmonar/patología , Tórax
8.
J Am Chem Soc ; 134(11): 5120-30, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22360372

RESUMEN

Superoxide reductase is a nonheme iron metalloenzyme that detoxifies superoxide anion radicals O(2)(•-) in some microorganisms. Its catalytic mechanism was previously proposed to involve a single ferric iron (hydro)peroxo intermediate, which is protonated to form the reaction product H(2)O(2). Here, we show by pulse radiolysis that the mutation of the well-conserved lysine 48 into isoleucine in the SOR from Desulfoarculus baarsii dramatically affects its reaction with O(2)(•-). Although the first reaction intermediate and its decay are not affected by the mutation, H(2)O(2) is no longer the reaction product. In addition, in contrast to the wild-type SOR, the lysine mutant catalyzes a two-electron oxidation of an olefin into epoxide in the presence of H(2)O(2), suggesting the formation of iron-oxo intermediate species in this mutant. In agreement with the recent X-ray structures of the peroxide intermediates trapped in a SOR crystal, these data support the involvement of lysine 48 in the specific protonation of the proximal oxygen of the peroxide intermediate to generate H(2)O(2), thus avoiding formation of iron-oxo species, as is observed in cytochrome P450. In addition, we proposed that the first reaction intermediate observed by pulse radiolysis is a ferrous-iron superoxo species, in agreement with TD-DFT calculations of the absorption spectrum of this intermediate. A new reaction scheme for the catalytical mechanism of SOR with O(2)(•-) is presented in which ferrous iron-superoxo and ferric hydroperoxide species are reaction intermediates, and the lysine 48 plays a key role in the control of the evolution of iron peroxide intermediate to form H(2)O(2).


Asunto(s)
Deltaproteobacteria/enzimología , Evolución Molecular , Compuestos Férricos/metabolismo , Lisina/metabolismo , Oxidorreductasas/metabolismo , Peróxidos/metabolismo , Protones , Compuestos Férricos/química , Lisina/química , Oxidorreductasas/química , Peróxidos/química , Teoría Cuántica
9.
Med Phys ; 49(3): 2068-2081, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34407219

RESUMEN

Current radiotherapy facilities are standardized to deliver dose rates around 0.1-0.4 Gy/s in 2 Gy daily fractions, designed to deliver total accumulated doses to reach the tolerance limit of normal tissues undergoing irradiation. FLASH radiotherapy (FLASH-RT), on the other hand, relies on facilities capable of delivering ultrahigh dose rates in large doses in a single microsecond pulse, or in a few pulses given over a very short time sequence. For example, most studies to date have implemented 4-6 MeV electrons with intra-pulse dose rates in the range 106 -107  Gy/s. The proposed dependence of the FLASH effect on oxygen tension has stimulated several theoretical models based on three different hypotheses: (i) Radiation-induced transient oxygen depletion; (ii) cell-specific differences in the ability to detoxify and/or recover from injury caused by reactive oxygen species; (iii) self-annihilation of radicals by bimolecular recombination. This article focuses on the observations supporting or refuting these models in the frame of the chemical-biological bases of the impact of oxygen on the radiation response of cell free, in vitro and in vivo model systems.


Asunto(s)
Oxígeno , Oncología por Radiación , Electrones , Dosificación Radioterapéutica
10.
Med Phys ; 49(3): 1993-2013, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34426981

RESUMEN

Radiation exposures at ultrahigh dose rates (UHDRs) at several orders of magnitude greater than in current clinical radiotherapy (RT) have been shown to manifest differential radiobiological responses compared to conventional (CONV) dose rates. This has led to studies investigating the application of UHDR for therapeutic advantage (FLASH-RT) that have gained significant interest since the initial discovery in 2014 that demonstrated reduced lung toxicity with equivalent levels of tumor control compared with conventional dose-rate RT. Many subsequent studies have demonstrated the potential protective role of FLASH-RT in normal tissues, yet the underlying molecular and cellular mechanisms of the FLASH effect remain to be fully elucidated. Here, we summarize the current evidence of the FLASH effect and review FLASH-RT studies performed in preclinical models of normal tissue response. To critically examine the underlying biological mechanisms of responses to UHDR radiation exposures, we evaluate in vitro studies performed with normal and tumor cells. Differential responses to UHDR versus CONV irradiation recurrently involve reduced inflammatory processes and differential expression of pro- and anti-inflammatory genes. In addition, frequently reduced levels of DNA damage or misrepair products are seen after UHDR irradiation. So far, it is not clear what signal elicits these differential responses, but there are indications for involvement of reactive species. Different susceptibility to FLASH effects observed between normal and tumor cells may result from altered metabolic and detoxification pathways and/or repair pathways used by tumor cells. We summarize the current theories that may explain the FLASH effect and highlight important research questions that are key to a better mechanistic understanding and, thus, the future implementation of FLASH-RT in the clinic.


Asunto(s)
Neoplasias , Oncología por Radiación , Protocolos Clínicos , Humanos , Neoplasias/radioterapia , Radiobiología , Dosificación Radioterapéutica
11.
Int J Radiat Oncol Biol Phys ; 113(5): 985-995, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227789

RESUMEN

PURPOSE: For many years, the effect of dose rate (DR) was considered negligible in external beam radiation therapy (EBRT) until very-high DR (>10 Gy/min) became possible and ultrahigh DR (>40 Gy/s) showed dramatic protection of normal tissues in preclinical experiments. We propose a critical review of preclinical and clinical studies to investigate the biological and clinical effects of DR variation in the range covering brachytherapy to flattening filter free EBRT and FLASH. METHODS AND MATERIALS: Preclinical and clinical studies investigating biological and clinical DR effects were reviewed extensively. We also conducted an in silico study to assess the effect of pulse DR (DRp), taking into account the mean time between 2 tracks during the pulse. RESULTS: Preclinical studies have shown that an increase in DR in the range of 0.01 to 20 Gy/min (not including ultralow or ultrahigh DR) resulted in decreased survival of both normal and tumor cells. This effect was attributed primarily to increasingly unrepaired "sublethal" DNA damage with increasing the DR. However, the models and irradiation conditions have often been very different from one radiobiological study to another. Moreover, the physical parameters on the spatial and temporal microstructure of the beam were not considered systematically. In particular, the DRp was rarely mentioned. The in silico studies showed that for the same average DR, increasing DRp induced an increase of mean track rates. These results could explain the presence of more complex damage when the DRp was increased within the range of DR considered, in relation to the time-dependent probability of accumulating unrepaired, "sublethal" DNA lesions in close proximity. CONCLUSIONS: Knowledge of the beam microstructure is critical to understanding the biological impact and the clinical outcomes of radiation at the DR commonly used in radiation therapy.


Asunto(s)
Braquiterapia , Braquiterapia/métodos , Humanos
12.
J Biol Chem ; 285(17): 13092-106, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20177072

RESUMEN

Carriers of mutations in the cell cycle checkpoint protein kinase ataxia telangiectasia mutated (ATM), which represent 1-2% of the general population, have an increased risk of breast cancer. However, experimental evidence that ATM deficiency contributes to human breast carcinogenesis is lacking. We report here that in MCF-10A and MCF-12A cells, which are well established normal human mammary gland epithelial cell models, partial or almost complete stable ATM silencing or pharmacological inhibition resulted in cellular transformation, genomic instability, and formation of dysplastic lesions in NOD/SCID mice. These effects did not require the activity of exogenous DNA-damaging agents and were preceded by an unsuspected and striking increase in cell proliferation also observed in primary human mammary gland epithelial cells. Increased proliferation correlated with a dramatic, transient, and proteasome-dependent reduction of p21(WAF1/CIP1) and p27(KIP1) protein levels, whereas little or no effect was observed on p21(WAF1/CIP1) or p27(KIP1) mRNAs. p21(WAF1/CIP1) silencing also increased MCF-10A cell proliferation, thus identifying p21(WAF1/CIP1) down-regulation as a mediator of the proliferative effect of ATM inhibition. Our findings provide the first experimental evidence that ATM is a human breast tumor suppressor. In addition, they mirror the sensitivity of ATM tumor suppressor function and unveil a new mechanism by which ATM might prevent human breast tumorigenesis, namely a direct inhibitory effect on the basal proliferation of normal mammary epithelial cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Silenciador del Gen , Glándulas Mamarias Humanas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/prevención & control , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/genética , Células Epiteliales/patología , Femenino , Inestabilidad Genómica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glándulas Mamarias Humanas/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética
13.
Biochim Biophys Acta ; 1804(4): 762-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19962458

RESUMEN

Superoxide reductase SOR is an enzyme involved in superoxide detoxification in some microorganisms. Its active site consists of a non-heme ferrous center in an unusual [Fe(NHis)(4) (SCys)(1)] square pyramidal pentacoordination that efficiently reduces superoxide into hydrogen peroxide. In previous works, the reaction mechanism of the SOR from Desulfoarculus baarsii enzyme, studied by pulse radiolysis, was shown to involve the formation of two reaction intermediates T1 and T2. However, the absorption spectrum of T2 was reported with an unusual sharp band at 625 nm, very different from that reported for other SORs. In this work, we show that the sharp band at 625 nm observed by pulse radiolysis reflects the presence of photochemical processes that occurs at the level of the transient species formed during the reaction of SOR with superoxide. These processes do not change the stoichiometry of the global reaction. These data highlight remarkable photochemical properties for these reaction intermediates, not previously suspected for iron-peroxide species formed in the SOR active site. We have reinvestigated the reaction mechanism of the SOR from D. baarsii by pulse radiolysis in the absence of these photochemical processes. The T1 and T2 intermediates now appear to have absorption spectra similar to those reported for the Archaeoglobus fulgidus SOR enzymes. Although for some enzymes of the family only one transient was reported, on the whole, the reaction mechanisms of the different SORs studied so far seem very similar, which is in agreement with the strong sequence and structure homologies of their active sites.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Deltaproteobacteria/enzimología , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas Bacterianas/genética , Dominio Catalítico , Deltaproteobacteria/genética , Cinética , Oxidorreductasas/genética , Procesos Fotoquímicos , Radiólisis de Impulso , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometría , Superóxidos/metabolismo
14.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638424

RESUMEN

The development of innovative approaches that would reduce the sensitivity of healthy tissues to irradiation while maintaining the efficacy of the treatment on the tumor is of crucial importance for the progress of the efficacy of radiotherapy. Recent methodological developments and innovations, such as scanned beams, ultra-high dose rates, and very high-energy electrons, which may be simultaneously available on new accelerators, would allow for possible radiobiological advantages of very short pulses of ultra-high dose rate (FLASH) therapy for radiation therapy to be considered. In particular, very high-energy electron (VHEE) radiotherapy, in the energy range of 100 to 250 MeV, first proposed in the 2000s, would be particularly interesting both from a ballistic and biological point of view for the establishment of this new type of irradiation technique. In this review, we examine and summarize the current knowledge on VHEE radiotherapy and provide a synthesis of the studies that have been published on various experimental and simulation works. We will also consider the potential for VHEE therapy to be translated into clinical contexts.

15.
Prostate ; 70(4): 401-11, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19902473

RESUMEN

BACKGROUND: Bicalutamide (Casodex) reportedly improves high-risk prostate cancer survival as an adjuvant treatment following radiotherapy. However, biological data for the interaction between bicalutamide and ionizing radiation in concomitant association are lacking. METHODS: To explore this issue, androgen-dependent (LNCaP) and -independent (DU145) human prostate cancer cells were exposed for 48 hr to 20, 40, or 80 microM bicalutamide introduced before (neoadjuvant), during (concomitant), or following (adjuvant) radiation. Growth inhibition and cytotoxicity, cell cycle distribution and expression of the prostate serum antigen (PSA) and androgen receptor (AR), were measured as endpoints. RESULTS: Bicalutamide-induced cytotoxic and cytostatic effects were found to be correlated with a marked G1 phase arrest and S phase depression. The drug down-regulated PSA and AR proteins and psa mRNA in LNCaP cells. However, transient up-regulation of the expression of ar mRNA was observed in the presence of 40 microM drug. DU145 cells did not express PSA and proved to be comparatively resistant to the drug from both cytostatic and cytotoxic effects. Bicalutamide dose-dependently induced a significant decrease of radiation susceptibility among drug survivors in LNCaP cells, whilst the interaction appeared to be additive in DU145 cells. CONCLUSIONS: The antagonistic radiation-drug interaction observed in LNCaP cells is of significance in relation to combined radiotherapy-bicalutamide treatments directed against tumors expressing the AR. The results suggest that bicalutamide is amenable to combined schedule with radiotherapy provided the drug and radiation are not given in close temporal proximity.


Asunto(s)
Adenocarcinoma/terapia , Antagonistas de Andrógenos/farmacología , Anilidas/farmacología , Antineoplásicos/farmacología , Nitrilos/farmacología , Neoplasias de la Próstata/terapia , Compuestos de Tosilo/farmacología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fase G1/efectos de los fármacos , Fase G1/efectos de la radiación , Humanos , Masculino , Terapia Neoadyuvante , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Radioterapia Adyuvante , Receptores Androgénicos/metabolismo , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Factores de Tiempo
16.
Nucleic Acids Res ; 36(13): 4454-64, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18603595

RESUMEN

The consequences of PARP-1 disruption or inhibition on DNA single-strand break repair (SSBR) and radio-induced lethality were determined in synchronized, isogenic HeLa cells stably silenced or not for poly(ADP-ribose) polymerase-1 (PARP-1) (PARP-1(KD)) or XRCC1 (XRCC1(KD)). PARP-1 inhibition prevented XRCC1-YFP recruitment at sites of 405 nm laser micro irradiation, slowed SSBR 10-fold and triggered the accumulation of large persistent foci of GFP-PARP-1 and GFP-PCNA at photo damaged sites. These aggregates are presumed to hinder the recruitment of other effectors of the base excision repair (BER) pathway. PARP-1 silencing also prevented XRCC1-YFP recruitment but did not lengthen the lifetime of GFP-PCNA foci. Moreover, PARP-1(KD) and XRCC1(KD) cells in S phase completed SSBR as rapidly as controls, while SSBR was delayed in G1. Taken together, the data demonstrate that a PARP-1- and XRCC1-independent SSBR pathway operates when the short patch repair branch of the BER is deficient. Long patch repair is the likely mechanism, as GFP-PCNA recruitment at photo-damaged sites was normal in PARP-1(KD) cells. PARP-1 silencing elicited hyper-radiosensitivity, while radiosensitization by a PARP inhibitor reportedly occurs only in those cells treated in S phase. PARP-1 inhibition and deletion thus have different outcomes in terms of SSBR and radiosensitivity.


Asunto(s)
Roturas del ADN de Cadena Simple , Reparación del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Tolerancia a Radiación , 1-Naftilamina/análogos & derivados , 1-Naftilamina/farmacología , ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Fase G1 , Rayos gamma , Células HeLa , Humanos , Rayos Láser , Naftalimidas/farmacología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Quinolonas/farmacología , Interferencia de ARN , Fase S , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
18.
Radiother Oncol ; 153: 303-310, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32534957

RESUMEN

BACKGROUND AND PURPOSE: FLASH radiotherapy, a technique based on delivering large doses in a single fraction at the micro/millisecond timescale, spares normal tissues from late radiation-induced toxicity, in an oxygen-dependent process, whilst keeping full anti-tumor efficiency. We present a theoretical model taking into account the kinetics of formation and decay of reactive oxygen species, in particular of organic peroxyl radicals ROO. formed by addition of O2 to primary carbon-centred radicals R. and known to play a major role at the origin radio-induced complications. MATERIALS AND METHODS: The model focuses on the time-dependent evolution of radiolytic products in living matter exposed to continuous irradiation at dose-rates in the range 10-3-107Gy·s-1. The 9 differential rate equations resulting from the radiolytic and enzymatic reactions network were solved using the published values of these reactions rate constants in a cellular environment. RESULTS: The model suggests a correlation between the area-under-the-curve of time-evolving [ROO.] and the probability of normal tissue complications. The model does not lend weight to the hypothesis of transient oxygen depletion as a main determinant of FLASH but rather suggests a major role of radical-radical recombination. CONCLUSION: The model gives support to the reduction of ROO. lifetime as the main root of FLASH and compares favorably with published experimental results. We conclude that any process - in this case radical recombination - that shortens the lifetime or limits the radiolytic yield of ROO. is likely to protect normoxic tissues against the deleterious effects of radiation.


Asunto(s)
Oxígeno , Peróxidos , Humanos , Cinética , Recombinación Genética
19.
Br J Radiol ; 93(1107): 20190807, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32003574

RESUMEN

After years of lethargy, studies on two non-conventional microstructures in time and space of the beams used in radiation therapy are enjoying a huge revival. The first effect called "FLASH" is based on very high dose-rate irradiation (pulse amplitude ≥106 Gy/s), short beam-on times (≤100 ms) and large single doses (≥10 Gy) as experimental parameters established so far to give biological and potential clinical effects. The second effect relies on the use of arrays of minibeams (e.g., 0.5-1 mm, spaced 1-3.5 mm). Both approaches have been shown to protect healthy tissues as an endpoint that must be clearly specified and could be combined with each other (e.g., minibeams under FLASH conditions). FLASH depends on the presence of oxygen and could proceed from the chemistry of peroxyradicals and a reduced incidence on DNA and membrane damage. Minibeams action could be based on abscopal effects, cell signalling and/or migration of cells between "valleys and hills" present in the non-uniform irradiation field as well as faster repair of vascular damage. Both effects are expected to maintain intact the tumour control probability and might even preserve antitumoural immunological reactions. FLASH in vivo experiments involving Zebrafish, mice, pig and cats have been done with electron beams, while minibeams are an intermediate approach between X-GRID and synchrotron X-ray microbeams radiation. Both have an excellent rationale to converge and be applied with proton beams, combining focusing properties and high dose rates in the beam path of pencil beams, and the inherent advantage of a controlled limited range. A first treatment with electron FLASH (cutaneous lymphoma) has recently been achieved, but clinical trials have neither been presented for FLASH with protons, nor under the minibeam conditions. Better understanding of physical, chemical and biological mechanisms of both effects is essential to optimize the technical developments and devise clinical trials.


Asunto(s)
Tratamientos Conservadores del Órgano/métodos , Terapia de Protones/métodos , Animales , Gatos , Proliferación Celular , Daño del ADN , Reparación del ADN , Fraccionamiento de la Dosis de Radiación , Linfoma Cutáneo de Células T/radioterapia , Ratones , Órganos en Riesgo/efectos de la radiación , Oxígeno , Consumo de Oxígeno , Traumatismos por Radiación/prevención & control , Tolerancia a Radiación , Radiometría/métodos , Neoplasias Cutáneas/radioterapia , Análisis Espacio-Temporal , Porcinos , Pez Cebra
20.
Clin Cancer Res ; 26(6): 1497-1506, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31796518

RESUMEN

PURPOSE: One of the main limitations to anticancer radiotherapy lies in irreversible damage to healthy tissues located within the radiation field. "FLASH" irradiation at very high dose-rate is a new treatment modality that has been reported to specifically spare normal tissue from late radiation-induced toxicity in animal models and therefore could be a promising strategy to reduce treatment toxicity. EXPERIMENTAL DESIGN: Lung responses to FLASH irradiation were investigated by qPCR, single-cell RNA sequencing (sc-RNA-Seq), and histologic methods during the acute wound healing phase as well as at late stages using C57BL/6J wild-type and Terc-/- mice exposed to bilateral thorax irradiation as well as human lung cells grown in vitro. RESULTS: In vitro studies gave evidence of a reduced level of DNA damage and induced lethality at the advantage of FLASH. In mouse lung, sc-RNA-seq and the monitoring of proliferating cells revealed that FLASH minimized the induction of proinflammatory genes and reduced the proliferation of progenitor cells after injury. At late stages, FLASH-irradiated lungs presented less persistent DNA damage and senescent cells than after CONV exposure, suggesting a higher potential for lung regeneration with FLASH. Consistent with this hypothesis, the beneficial effect of FLASH was lost in Terc-/- mice harboring critically short telomeres and lack of telomerase activity. CONCLUSIONS: The results suggest that, compared with conventional radiotherapy, FLASH minimizes DNA damage in normal cells, spares lung progenitor cells from excessive damage, and reduces the risk of replicative senescence.


Asunto(s)
Senescencia Celular/efectos de la radiación , Pulmón/efectos de la radiación , ARN/fisiología , Análisis de la Célula Individual/métodos , Células Madre/efectos de la radiación , Telomerasa/fisiología , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , RNA-Seq/métodos , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA