RESUMEN
BACKGROUND: Plant genome information is fundamental to plant research and development. Along with the increase in the number of published plant genomes, there is a need for an efficient system to retrieve various kinds of genome-related information from many plant species across plant kingdoms. Various plant databases have been developed, but no public database covers both genomic and genetic resources over a wide range of plant species. MAIN BODY: We have developed a plant genome portal site, Plant GARDEN (Genome And Resource Database Entry: https://plantgarden.jp/en/index ), to provide diverse information related to plant genomics and genetics in divergent plant species. Elasticsearch is used as a search engine, and cross-keyword search across species is available. Web-based user interfaces (WUI) for PCs and tablet computers were independently developed to make data searches more convenient. Several types of data are stored in Plant GARDEN: reference genomes, gene sequences, PCR-based DNA markers, trait-linked DNA markers identified in genetic studies, SNPs, and in/dels on publicly available sequence read archives (SRAs). The data registered in Plant GARDEN as of March 2023 included 304 assembled genome sequences, 11,331,614 gene sequences, 419,132 DNA markers, 8,225 QTLs, and 5,934 SNP lists (gvcf files). In addition, we have re-annotated all the genes registered in Plant GARDEN by using a functional annotation tool, Hayai-Annotation, to compare the orthologous relationships among genes. CONCLUSION: The aim of Plant GARDEN is to provide plant genome information for use in the fields of plant science as well as for plant-based industries, education, and other relevant areas. Therefore, we have designed a WUI that allows a diverse range of users to access such information in an easy-to-understand manner. Plant GARDEN will eventually include a wide range of plant species for which genome sequences are assembled, and thus the number of plant species in the database will continue to expand. We anticipate that Plant GARDEN will promote the understanding of genomes and gene diversity by facilitating comparisons of the registered sequences.
Asunto(s)
Bases de Datos Genéticas , Genómica , Marcadores Genéticos , Genoma de Planta/genética , Sitios de Carácter CuantitativoRESUMEN
Many studies have reported that advancing age in broodmares has a negative impact on the reproductive performance of horses. However, although the ages at first and last mating vary among broodmares, it is unknown how this variation affects the correlation between age and reproductive performance in mares. Here, in order to examine the effects of the ages at first and last mating, we analyzed all recorded mating events for Thoroughbreds in Japan from 1997 to 2017. We found that the live foal birth rate of mares with a younger age at first mating indeed declined at an earlier age than those with an older age at first mating and that the number of years since the first mating also contributes to the decline in the birth rate. We also found that the live foal birth rate and mean earnings of the produced foals are much higher for mares with an older age at last mating compared with mares with a younger age at last mating. Our results should aid breeders in assessing the value of broodmares and designing breeding strategies.
RESUMEN
Many transposable element (TE) families show surprisingly high levels of similarity between distantly related species. This high similarity, coupled with a "patchy" phylogenetic distribution, has often been attributed to frequent horizontal transfers of TEs between species, even though the mechanistic basis tends to be speculative. Here, we studied the evolution of the Au SINE (Short INterspersed Element) family, in which high similarity between distantly related plant species has been reported. We were able to identify several copies present in orthologous regions of various species, including species that diverged â¼90 Ma, thereby confirming the presence of Au SINE at multiple evolutionary time points. We also found that the Au SINE has been degenerating and is en route to disappearing in many species, indicating that the loss of Au SINE is common. Our results suggest that the evolution of the Au SINE can be readily explained by a scenario of vertical transmission without having to invoke hypothetical scenarios of rampant horizontal transfers. The Au SINE was likely present in the common ancestor of all angiosperms and was retained in some lineages while lost from others. The high level of conservation is probably because the sequences were important for ensuring their transpositional activity. This model of TE evolution should provide a basic framework for understanding the evolution of TEs in general.
Asunto(s)
Magnoliopsida/genética , Elementos de Nucleótido Esparcido Corto , Evolución Biológica , Elementos Transponibles de ADN , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Genes de Plantas , Genoma de Planta , Filogenia , Zea maysRESUMEN
The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant-herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.
Asunto(s)
Adaptación Fisiológica/genética , Genoma/genética , Herbivoria/genética , Tetranychidae/genética , Tetranychidae/fisiología , Adaptación Fisiológica/fisiología , Animales , Ecdisterona/análogos & derivados , Ecdisterona/genética , Evolución Molecular , Fibroínas/genética , Regulación de la Expresión Génica , Transferencia de Gen Horizontal/genética , Genes Homeobox/genética , Genómica , Herbivoria/fisiología , Datos de Secuencia Molecular , Muda/genética , Familia de Multigenes/genética , Nanoestructuras/química , Plantas/parasitología , Seda/biosíntesis , Seda/química , Transcriptoma/genéticaRESUMEN
Horses have substantial variation in coat color, and the genetic loci responsible for the coat color variations have been well investigated. It has been believed that some color variations should follow a single-locus Mendelian law. Examples include the Gray locus that causes the gray phenotype and the Extension locus that specifies the chestnut phenotype. We reevaluated the roles of the Gray and Extension loci by using a large number of mating records of Thoroughbred racing horses. We showed that the data indeed fits the Mendelian law extremely well for the two loci. Furthermore, we demonstrated that the Extension and Agouti loci might have an additional role in determining the degree of melanin that should distinguish bay, dark bay, and brown.
RESUMEN
Hotspots of non-allelic homologous recombination (NAHR) have a crucial role in creating genetic diversity and are also associated with dozens of genomic disorders. Recent studies suggest that many human NAHR hotspots have been preserved throughout the evolution of primates. NAHR hotspots are likely to remain active as long as the segmental duplications (SDs) promoting NAHR retain sufficient similarity. Here, we propose an evolutionary model of SDs that incorporates the effect of gene conversion and compare it with a null model that assumes SDs evolve independently without gene conversion. The gene conversion model predicts a much longer lifespan of NAHR hotspots compared with the null model. We show that the literature on copy number variants (CNVs) and genomic disorders, and also the results of additional analysis of CNVs, are all more consistent with the gene conversion model.
Asunto(s)
Conversión Génica/genética , Reordenamiento Génico/genética , Genoma Humano/genética , Alelos , Animales , Evolución Molecular , Recombinación Homóloga/genética , Humanos , Modelos GenéticosRESUMEN
Meiotic chromosome architecture called 'axis-loop structures' and histone modifications have been shown to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. The frequency of DSB sites is overall constant between Rec8 binding sites. However, DSB cold spots are observed in regions spanning ±0.8 kb around Rec8 binding sites. The axis-associated cold spots are not due to the exclusion of Spo11 localization from the axis, because ChIP experiments showed that substantial Spo11 persists at Rec8 binding sites during DSB formation. Spo11 fused with Gal4 DNA binding domain (Gal4BD-Spo11) tethered in close proximity (≤0.8 kb) to Rec8 binding sites hardly forms meiotic DSBs, in contrast with other regions. In addition, H3K4 trimethylation (H3K4me3) remarkably decreases at Rec8 binding sites. These results suggest that reduced histone H3K4me3 in combination with inactivation of Spo11 activity on the axis discourages DSB hot spot formation.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/genética , Meiosis , Recombinación Genética , Saccharomyces cerevisiae/genética , Sitios de Unión , Proteínas de Ciclo Celular/genética , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Histonas/metabolismo , Metilación , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , CohesinasRESUMEN
Heavy-ion beam, a type of ionizing radiation, has been applied to plant breeding as a powerful mutagen and is a promising tool to induce large deletions and chromosomal rearrangements. The effectiveness of heavy-ion irradiation can be explained by linear energy transfer (LET; keV µm-1). Heavy-ion beams with different LET values induce different types and sizes of mutations. It has been suggested that deletion size increases with increasing LET value, and complex chromosomal rearrangements are induced in higher LET radiations. In this study, we mapped heavy-ion beam-induced deletions detected in Arabidopsis mutants to its genome. We revealed that deletion sizes were similar between different LETs (100 to 290 keV µm-1), that their upper limit was affected by the distribution of essential genes, and that the detected chromosomal rearrangements avoid disrupting the essential genes. We also focused on tandemly arrayed genes (TAGs), where two or more homologous genes are adjacent to one another in the genome. Our results suggested that 100 keV µm-1 of LET is enough to disrupt TAGs and that the distribution of essential genes strongly affects the heritability of mutations overlapping them. Our results provide a genomic view of large deletion inductions in the Arabidopsis genome.
RESUMEN
The number of introns varies considerably among different organisms. This can be explained by the differences in the rates of intron gain and loss. Two factors that are likely to influence these rates are selection for or against introns and the mutation rate that generates the novel intron or the intronless copy. Although it has been speculated that stronger selection for a compact genome might result in a higher rate of intron loss and a lower rate of intron gain, clear evidence is lacking, and the role of selection in determining these rates has not been established. Here, we studied the gain and loss of introns in the two closely related species Arabidopsis thaliana and A. lyrata as it was recently shown that A. thaliana has been undergoing a faster genome reduction driven by selection. We found that A. thaliana has lost six times more introns than A. lyrata since the divergence of the two species but gained very few introns. We suggest that stronger selection for genome reduction probably resulted in the much higher intron loss rate in A. thaliana, although further analysis is required as we could not find evidence that the loss rate increased in A. thaliana as opposed to having decreased in A. lyrata compared with the rate in the common ancestor. We also examined the pattern of the intron gains and losses to better understand the mechanisms by which they occur. Microsimilarity was detected between the splice sites of several gained and lost introns, suggesting that nonhomologous end joining repair of double-strand breaks might be a common pathway not only for intron gain but also for intron loss.
Asunto(s)
Arabidopsis/genética , Tamaño del Genoma , Inestabilidad Genómica , Intrones/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Evolución Molecular , Genoma de Planta , Modelos Genéticos , Mutación , Tasa de Mutación , Selección GenéticaRESUMEN
Common buckwheat, Fagopyrum esculentum, is an orphan crop domesticated in southwest China that exhibits heterostylous self-incompatibility. Here we present chromosome-scale assemblies of a self-compatible F. esculentum accession and a self-compatible wild relative, Fagopyrum homotropicum, together with the resequencing of 104 wild and cultivated F. esculentum accessions. Using these genomic data, we report the roles of transposable elements and whole-genome duplications in the evolution of Fagopyrum. In addition, we show that (1) the breakdown of heterostyly occurs through the disruption of a hemizygous gene jointly regulating the style length and female compatibility and (2) southeast Tibet was involved in common buckwheat domestication. Moreover, we obtained mutants conferring the waxy phenotype for the first time in buckwheat. These findings demonstrate the utility of our F. esculentum assembly as a reference genome and promise to accelerate buckwheat research and breeding.
Asunto(s)
Fagopyrum , Fagopyrum/genética , Domesticación , Fitomejoramiento , Mapeo Cromosómico , Secuencia de BasesRESUMEN
Most flowering plants have been shown to be ancient polyploids that have undergone one or more whole genome duplications early in their evolution. Furthermore, many different plant lineages seem to have experienced an additional, more recent genome duplication. Starting from paralogous genes lying in duplicated segments or identified in large expressed sequence tag collections, we dated these youngest duplication events through penalized likelihood phylogenetic tree inference. We show that a majority of these independent genome duplications are clustered in time and seem to coincide with the Cretaceous-Tertiary (KT) boundary. The KT extinction event is the most recent mass extinction caused by one or more catastrophic events such as a massive asteroid impact and/or increased volcanic activity. These events are believed to have generated global wildfires and dust clouds that cut off sunlight during long periods of time resulting in the extinction of approximately 60% of plant species, as well as a majority of animals, including dinosaurs. Recent studies suggest that polyploid species can have a higher adaptability and increased tolerance to different environmental conditions. We propose that polyploidization may have contributed to the survival and propagation of several plant lineages during or following the KT extinction event. Due to advantages such as altered gene expression leading to hybrid vigor and an increased set of genes and alleles available for selection, polyploid plants might have been better able to adapt to the drastically changed environment 65 million years ago.
Asunto(s)
Evolución Biológica , Genoma de Planta , Fenómenos Geológicos , Poliploidía , Desastres , Extinción Biológica , Duplicación de Gen , Genes de Plantas , Selección GenéticaRESUMEN
Hyperdiverse tropical rainforests, such as the aseasonal forests in Southeast Asia, are supported by high annual rainfall. Its canopy is dominated by the species-rich tree family of Dipterocarpaceae (Asian dipterocarps), which has both ecological (e.g., supports flora and fauna) and economical (e.g., timber production) importance. Recent ecological studies suggested that rare irregular drought events may be an environmental stress and signal for the tropical trees. We assembled the genome of a widespread but near threatened dipterocarp, Shorea leprosula, and analyzed the transcriptome sequences of ten dipterocarp species representing seven genera. Comparative genomic and molecular dating analyses suggested a whole-genome duplication close to the Cretaceous-Paleogene extinction event followed by the diversification of major dipterocarp lineages (i.e. Dipterocarpoideae). Interestingly, the retained duplicated genes were enriched for genes upregulated by no-irrigation treatment. These findings provide molecular support for the relevance of drought for tropical trees despite the lack of an annual dry season.
Asunto(s)
Dipterocarpaceae/genética , Sequías , Duplicación de Gen , Genoma de Planta , Bosque Lluvioso , Malasia , Estaciones del AñoRESUMEN
Nature has found many ways to utilize transposable elements (TEs) throughout evolution. Many molecular and cellular processes depend on DNA-binding proteins recognizing hundreds or thousands of similar DNA motifs dispersed throughout the genome that are often provided by TEs. It has been suggested that TEs play an important role in the evolution of such systems, in particular, the rewiring of gene regulatory networks. One mechanism that can further enhance the rewiring of regulatory networks is nonallelic gene conversion between copies of TEs. Here, we will first review evidence for nonallelic gene conversion in TEs. Then, we will illustrate the benefits nonallelic gene conversion provides in rewiring regulatory networks. For instance, nonallelic gene conversion between TE copies offers an alternative mechanism to spread beneficial mutations that improve the network, it allows multiple mutations to be combined and transferred together, and it allows natural selection to work efficiently in spreading beneficial mutations and removing disadvantageous mutations. Future studies examining the role of nonallelic gene conversion in the evolution of TEs should help us to better understand how TEs have contributed to evolution.
Asunto(s)
Elementos Transponibles de ADN/genética , Conversión Génica/genética , Conversión Génica/fisiología , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Humanos , Mutación/genéticaRESUMEN
The domestication process of plants and animals typically involves intense inbreeding and directional selection for various traits. Here, we genotyped 370 Japanese Thoroughbred horses using the recently developed 670k SNP array and performed various genome-wide analysis also using genotype data of other horse breeds. We identified a number of regions showing interesting patterns of polymorphisms. For instance, the region containing the MC1R locus associated with chestnut coat color may have been targeted by selection for a different mutation much earlier on than the recent selection for chestnut color. We also identified regions that show signatures of selection specific to Thoroughbreds. In addition, we found that intense inbreeding early in the history of the Thoroughbred breed and also before the formation of the breed has a significant impact on the genomic architecture of modern Thoroughbreds. Our study demonstrates that the horse 670k array can be utilized to gain important insight into the domestication process of horses and to understand the genetic basis of the phenotypic diversity in horses.
Asunto(s)
Domesticación , Genoma/genética , Caballos/genética , Selección Genética , Animales , Cruzamiento , Variación Genética , Genotipo , Endogamia , Japón , Fenotipo , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
BACKGROUND: Analyses of complete genomes and large collections of gene transcripts have shown that most, if not all seed plants have undergone one or more genome duplications in their evolutionary past. RESULTS: In this study, based on a large collection of EST sequences, we provide evidence that the haploid moss Physcomitrella patens is a paleopolyploid as well. Based on the construction of linearized phylogenetic trees we infer the genome duplication to have occurred between 30 and 60 million years ago. Gene Ontology and pathway association of the duplicated genes in P. patens reveal different biases of gene retention compared with seed plants. CONCLUSION: Metabolic genes seem to have been retained in excess following the genome duplication in P. patens. This might, at least partly, explain the versatility of metabolism, as described for P. patens and other mosses, in comparison to other land plants.
Asunto(s)
Bryopsida/genética , Bryopsida/metabolismo , Evolución Molecular , Duplicación de Gen , Genoma de Planta/genética , Redes y Vías Metabólicas/genética , Filogenia , PoliploidíaRESUMEN
The fission yeast Schizosaccharomyces pombe has been widely used as a model eukaryote to study a diverse range of biological processes. However, population genetic studies of this species have been limited to date, and we know very little about the evolutionary processes and selective pressures that are shaping its genome. Here, we sequenced the genomes of 32 worldwide S. pombe strains and examined the pattern of polymorphisms across their genomes. In addition to introns and untranslated regions (UTRs), intergenic regions also exhibited lower levels of nucleotide diversity than synonymous sites, suggesting that a considerable amount of noncoding DNA is under selective constraint and thus likely to be functional. A number of genomic regions showed a reduction of nucleotide diversity probably caused by selective sweeps. We also identified a region close to the end of chromosome 3 where an extremely high level of divergence was observed between 5 of the 32 strains and the remain 27, possibly due to introgression, strong positive selection, or that region being responsible for reproductive isolation. Our study should serve as an important starting point in using a population genomics approach to further elucidate the biology of this important model organism.
Asunto(s)
Metagenómica , Schizosaccharomyces/genética , Frecuencia de los Genes , Variación Genética , Genoma Fúngico/genéticaRESUMEN
Genes involved in the transition from wild to cultivated crop species should be of great agronomic importance. Population genomic approaches utilizing genome resequencing data have been recently applied for this purpose, although it only reports a large list of candidate genes with no biological information. Here, by resequencing more than 30 genomes altogether of wild rice Oryza rufipogon and cultivated rice O. sativa, we identified a number of regions with clear footprints of selection during the domestication process. We then focused on identifying candidate domestication genes in these regions by utilizing the wealth of QTL information in rice. We were able to identify a number of interesting candidates such as transcription factors that should control key domestication traits such as shattering, awn length, and seed dormancy. Other candidates include those that might have been related to the improvement of grain quality and those that might have been involved in the local adaptation to dry conditions and colder environments. Our study shows that population genomic approaches and QTL mapping information can be used together to identify genes that might be of agronomic importance.
Asunto(s)
Mapeo Cromosómico , Genómica , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Evolución Molecular , Genoma de Planta/genética , Polimorfismo de Nucleótido Simple , Selección GenéticaRESUMEN
Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples.
RESUMEN
We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3× dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago, likely constitutes the derived state for the family. We found evidence for DNA loss from large-scale rearrangements, but most of the difference in genome size can be attributed to hundreds of thousands of small deletions, mostly in noncoding DNA and transposons. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. The high-quality reference genome sequence for A. lyrata will be an important resource for functional, evolutionary and ecological studies in the genus Arabidopsis.