RESUMEN
With the scaling of lateral dimensions in advanced transistors, an increased gate capacitance is desirable both to retain the control of the gate electrode over the channel and to reduce the operating voltage1. This led to a fundamental change in the gate stack in 2008, the incorporation of high-dielectric-constant HfO2 (ref. 2), which remains the material of choice to date. Here we report HfO2-ZrO2 superlattice heterostructures as a gate stack, stabilized with mixed ferroelectric-antiferroelectric order, directly integrated onto Si transistors, and scaled down to approximately 20 ångströms, the same gate oxide thickness required for high-performance transistors. The overall equivalent oxide thickness in metal-oxide-semiconductor capacitors is equivalent to an effective SiO2 thickness of approximately 6.5 ångströms. Such a low effective oxide thickness and the resulting large capacitance cannot be achieved in conventional HfO2-based high-dielectric-constant gate stacks without scavenging the interfacial SiO2, which has adverse effects on the electron transport and gate leakage current3. Accordingly, our gate stacks, which do not require such scavenging, provide substantially lower leakage current and no mobility degradation. This work demonstrates that ultrathin ferroic HfO2-ZrO2 multilayers, stabilized with competing ferroelectric-antiferroelectric order in the two-nanometre-thickness regime, provide a path towards advanced gate oxide stacks in electronic devices beyond conventional HfO2-based high-dielectric-constant materials.
RESUMEN
Achieving negative surgical margins, defined as no tumor found on the edges of the resected tissue, during lumpectomy for breast cancer is critical for mitigating the risk of local recurrence. To identify nonpalpable tumors that cannot be felt, pre-operative placements of wire and wire-free localization devices are typically employed. Wire-free localization approaches have significant practical advantages over wired techniques. In this study, we introduce an innovative localization system comprising a light-emitting diode (LED)-based implantable device and handheld system. The device, which is needle injectable and wire free, utilizes multiple wirelessly powered LEDs to provide direct visual guidance for lumpectomy. Two distinct colors, red and blue, provide a clear indication of tissue depth: blue light is absorbed strongly in tissue, visible within a close range of <1 cm, while red light remains visible through several centimeters of tissue. The LEDs, integrated with an impedance-matching circuit and receiver coil, are encapsulated in biocompatible epoxy for injection with a 12 G needle. Our findings demonstrate that the implant exhibits clearly perceivable depth-dependent color changes and remains visible through >2 cm of ex vivo chicken breast and bovine muscle tissue using less than 4 W of transmitted power from a handheld antenna. These miniaturized needle-injectable localization devices show promise for improving surgical guidance of nonpalpable breast tumors.
Asunto(s)
Neoplasias de la Mama , Luz , Mastectomía Segmentaria , Tecnología Inalámbrica , Femenino , Mastectomía Segmentaria/instrumentación , Animales , Neoplasias de la Mama/cirugía , Tecnología Inalámbrica/instrumentación , Humanos , Prótesis e Implantes , Bovinos , PollosRESUMEN
Substrate-integrated waveguides (SIWs) have recently attracted increasing attention for the development of terahertz (THz) circuits and systems. However, conventional SIWs employ fixed metallic vias to form the waveguide sidewalls, resulting in limited tunability and reconfigurability. In this paper, we report a novel approach for the realization of high-performance tunable and/or reconfigurable THz SIW structures. In this approach, photo-induced free carriers are generated in a high-resistivity silicon pillar-array structure to form well-defined, highly conductive, vertical sidewalls. The wave propagation properties of these optically-defined photo-induced SIWs (PI-SIWs) have been evaluated using full-wave electromagnetic simulations. Higher-functionality THz components, including a single-pole double-throw switch and a phase shifter were also designed and simulated. Based on these example circuits, PI-SIWs using pillar-array structures appear to be attractive candidates for the development of tunable and reconfigurable THz components for THz sensing, imaging, and communication systems.
RESUMEN
This work presents the implementation, numerical examples, and experimental convergence study of first- and second-order optimization methods applied to one-dimensional periodic gratings. Through boundary integral equations and shape derivatives, the profile of a grating is optimized such that it maximizes the diffraction efficiency for given diffraction modes for transverse electric polarization. We provide a thorough comparison of three different optimization methods: a first-order method (gradient descent); a second-order approach based on a Newton iteration, where the usual Newton step is replaced by taking the absolute value of the eigenvalues given by the spectral decomposition of the Hessian matrix to deal with non-convexity; and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, a quasi-Newton method. Numerical examples are provided to validate our claims. Moreover, two grating profiles are designed for high efficiency in the Littrow configuration and then compared to a high efficiency commercial grating. Conclusions and recommendations, derived from the numerical experiments, are provided as well as future research avenues.
RESUMEN
This paper explores the performance potential of gratings based on tungsten/hafnia (W/HfO2) stacks for thermophotovoltaic thermal emitters via numerical simulations. Structures consisting of a W grating over a HfO2 spacer layer and a W substrate are analyzed over a range of geometries. For shallow gratings (W grating thickness much smaller than the grating pitch), an emittance of 99.9% can be achieved for transverse magnetic (TM) polarization, but the transverse electric (TE) performance is appreciably lower. For deep gratings (W grating thickness on the order of the grating pitch), peak emittances of 97.8% and 99.7% for TE and TM polarizations, respectively, are achieved. We find that both surface plasmon polaritons and magnetic polaritons play a crucial role in shaping the emittance for TM radiation. On the other hand, cavity resonances are responsible for the almost perfect emittance in the case of TE polarization. These results suggest that by introducing an HfO2 layer it is possible to reach high emittance for operating temperatures that match the absorption characteristics of GaSb and InGaAs photovoltaic cells.
RESUMEN
Wrap-around gate GaN nanowire MOSFETs using Al2O3 as gate oxide have been experimentally demonstrated. The fabricated devices exhibit a minimum subthreshold slope of 60 mV/dec, an average subthreshold slope of 68 mV/dec over three decades of drain current, drain-induced barrier lowering of 27 mV/V, an on-current of 42 µA/µm (normalized by nanowire circumference), on/off ratio over 108, an intrinsic transconductance of 27.8 µS/µm, for a switching efficiency figure of merit, Q=gm/SS of 0.41 µS/µm-dec/mV. These performance metrics make GaN nanowire MOSFETs a promising candidate for emerging low-power applications such as sensors and RF for the internet of things.
RESUMEN
We report on dual-gate reflectometry in a metal-oxide-semiconductor double-gate silicon transistor operating at low temperature as a double quantum dot device. The reflectometry setup consists of two radio frequency resonators respectively connected to the two gate electrodes. By simultaneously measuring their dispersive responses, we obtain the complete charge stability diagram of the device. Electron transitions between the two quantum dots and between each quantum dot and either the source or the drain contact are detected through phase shifts in the reflected radio frequency signals. At finite bias, reflectometry allows probing charge transitions to excited quantum-dot states, thereby enabling direct access to the energy level spectra of the quantum dots. Interestingly, we find that in the presence of electron transport across the two dots the reflectometry signatures of interdot transitions display a dip-peak structure containing quantitative information on the charge relaxation rates in the double quantum dot.
RESUMEN
We report for the first time the synthesis of large, free-standing, Mo2O2(µ-S)2(Et2dtc)2 (MoDTC) nanosheets (NSs), which exhibit an electron-beam induced crystalline-to-amorphous phase transition. Both electron beam ionization and femtosecond (fs) optical excitation induce the phase transition, which is size-, morphology-, and composition-preserving. Resulting NSs are the largest, free-standing regularly shaped two-dimensional amorphous nanostructures made to date. More importantly, amorphization is accompanied by dramatic changes to the NS electrical and optical response wherein resulting amorphous species exhibit room-temperature conductivities 5 orders of magnitude larger than those of their crystalline counterparts. This enhancement likely stems from the amorphization-induced formation of sulfur vacancy-related defects and is supported by temperature-dependent transport measurements, which reveal efficient variable range hopping. MoDTC NSs represent one instance of a broader class of transition metal carbamates likely having applications because of their intriguing electrical properties as well as demonstrated ability to toggle metal oxidation states.
RESUMEN
Fluorophore saturation is the key factor limiting the speed and excitation range of fluorescence lifetime imaging microscopy (FLIM). For example, fluorophore saturation causes incorrect lifetime measurements when using conventional frequency-domain FLIM at high excitation powers. In this Letter, we present an analytical theoretical description of this error and present a method for compensating for this error in order to extract correct lifetime measurements in the limit of fluorophore saturation. We perform a series of simulations and experiments to validate our methods. The simulations and experiments show a 13.2× and a 2.6× increase in excitation range, respectively. The presented method is based on algorithms that can be easily applied to existing FLIM setups.
RESUMEN
Carbon, a compensator in GaN, is an inherent part of the organometallic vapor phase epitaxy (OMVPE) environment due to the use of organometallic sources. In this study, the impact of growth conditions are explored on the incorporation of carbon in GaN prepared via OMVPE on pseudo-bulk GaN wafers (in several cases, identical growths were performed on GaN-on-Al2O3 templates for comparison purposes). Growth conditions with different growth efficiencies but identical ammonia molar flows, when normalized for growth rate, resulted in identical carbon incorporation. It is concluded that only trimethylgallium which contributes to growth of the GaN layer contributes to carbon incorporation. Carbon incorporation was found to decrease proportionally with increasing ammonia molar flow, when normalized for growth rate. Ammonia molar flow divided by growth rate is proposed as a reactor independent predictor of carbon incorporation as opposed to the often-reported input V/III ratio. A low carbon concentration of 7.3 × 1014 atoms/cm3 (prepared at a growth rate of 0.57 µm/h) was obtained by optimizing growth conditions for GaN grown on pseudo-bulk GaN substrates.
RESUMEN
Nanotechnology opens new ways to utilize recent discoveries in biological image processing by translating the underlying functional concepts into the design of CNN (cellular neural/nonlinear network)-based systems incorporating nanoelectronic devices. There is a natural intersection joining studies of retinal processing, spatio-temporal nonlinear dynamics embodied in CNN, and the possibility of miniaturizing the technology through nanotechnology. This intersection serves as the springboard for our multidisciplinary project. Biological feature and motion detectors map directly into the spatio-temporal dynamics of CNN for target recognition, image stabilization, and tracking. The neural interactions underlying color processing will drive the development of nanoscale multispectral sensor arrays for image fusion. Implementing such nanoscale sensors on a CNN platform will allow the implementation of device feedback control, a hallmark of biological sensory systems. These biologically inspired CNN subroutines are incorporated into the new world of analog-and-logic algorithms and software, containing also many other active-wave computing mechanisms, including nature-inspired (physics and chemistry) as well as PDE-based sophisticated spatio-temporal algorithms. Our goal is to design and develop several miniature prototype devices for target detection, navigation, tracking, and robotics. This paper presents an example illustrating the synergies emerging from the convergence of nanotechnology, biotechnology, and information and cognitive science.
Asunto(s)
Inteligencia Artificial , Biomimética/instrumentación , Interpretación de Imagen Asistida por Computador/métodos , Nanotecnología/instrumentación , Redes Neurales de la Computación , Retina/fisiología , Transductores , Visión Ocular/fisiología , Animales , Biomimética/métodos , Diseño de Equipo , Humanos , Nanotecnología/métodos , Reconocimiento Visual de Modelos/fisiología , Procesamiento de Señales Asistido por ComputadorRESUMEN
The large electronic polarization in III-V nitrides allows for novel physics not possible in other semiconductor families. In this work, interband Zener tunneling in wide-band-gap GaN heterojunctions is demonstrated by using polarization-induced electric fields. The resulting tunnel diodes are more conductive under reverse bias, which has applications for zero-bias rectification and mm-wave imaging. Since interband tunneling is traditionally prohibitive in wide-band-gap semiconductors, these polarization-induced structures and their variants can enable a number of devices such as multijunction solar cells that can operate under elevated temperatures and high fields.