Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069305

RESUMEN

Alzheimer's disease (AD) is the most widespread form of senile dementia worldwide and represents a leading socioeconomic problem in healthcare. Although it is widely debated, the aggregation of the amyloid ß peptide (Aß) is linked to the onset and progression of this neurodegenerative disease. Molecules capable of interfering with specific steps in the fibrillation process remain of pharmacological interest. To identify such compounds, we have set up a small molecule screening process combining multiple experimental methods (UV and florescence spectrometry, ITC, and ATR-FTIR) to identify and characterise potential modulators of Aß1-42 fibrillation through the description of the biochemical interactions (molecule-membrane Aß peptide). Three known modulators, namely bexarotene, Chicago sky blue and indomethacin, have been evaluated through this process, and their modulation mechanism in the presence of a biomembrane has been described. Such a well-adapted physico-chemical approach to drug discovery proves to be an undeniable asset for the rapid characterisation of compounds of therapeutic interest for Alzheimer's disease. This strategy could be adapted and transposed to search for modulators of other amyloids such as tau protein.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomimética , Amiloide
2.
Angew Chem Int Ed Engl ; 61(46): e202208580, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36111509

RESUMEN

The first example of a cryptophazane, a cryptophane functionalized with a nitrogen atom replacing one of the methylene bridges, is obtained with a 28 % overall yield over 8 steps, through the preparation of a C1 -symmetrical aza-cyclotriveratrylene (aza-CTV). Herein, we demonstrate that the introduction of a nitrogen atom on this part of the cryptophane core enhances the solubility in organic media of both the cryptophane and the synthetic intermediates, while presenting the same conformation as known cryptophanes. Cryptophazane was prepared on a multigram scale and easily functionalized. We also investigated its ability to encapsulate xenon atoms using hyperpolarized 129 Xe (HP 129 Xe) NMR spectroscopy. We found that both its affinity and exchange kinetics were in the appropriate range for applications in 129 Xe magnetic resonance imaging (MRI). Combined with the wide range of possible functionalization, this makes cryptophazane an excellent candidate for targeted HP 129 Xe MRI.


Asunto(s)
Nitrógeno , Xenón , Estructura Molecular , Xenón/química , Espectroscopía de Resonancia Magnética/métodos
3.
Beilstein J Org Chem ; 15: 937-946, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31164930

RESUMEN

A series of alkyl thioglycosides and alkyl thiodiglycosides bearing glucose and N-acetylglucosamine residues were prepared by thiol-ene coupling in moderate to good yields (40-85%). Their binding ability towards wheat germ agglutinin was measured by competitive enzyme-linked lectin assays. One of the synthetic compounds presenting two GlcNAc units showed the highest inhibitory effect of this study with an IC50 of 11 µM corresponding to a 3182-fold improvement compared to GlcNAc. These synthetic molecules were used to produce giant vesicles, alone or in mixture with phospholipids, mimicking bacterial outer membrane vesicles (OMV) with potential antiadhesive properties.

4.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39065730

RESUMEN

A series of 61 thiazolidine-2,4-diones bearing a styryl group at position 5 was synthesized in 2-5 steps and their structure was proved by elemental and spectral analyses. The compounds obtained were evaluated in vitro against the promastigote stage of the kinetoplastid parasite Leishmania infantum and the human HepG2 cell line, to determine selectivity indices and to compare their activities with those of antileishmanial reference drugs. The study of structure-activity relationships indicated the potential of some derivatives bearing a nitro group on the phenyl ring, especially when located at the meta position. Thus, among the tested series, compound 14c appeared as a hit compound with good antileishmanial activity (EC50 = 7 µM) and low cytotoxicity against both the hepatic HepG2 and macrophage THP-1 human cell lines (CC50 = 101 and 121 µM, respectively), leading to good selectivity indices (respectively, 14 and 17), in comparison with the reference antileishmanial drug compound miltefosine (EC50 = 3.3 µM, CC50 = 85 and 30 µM, SI = 26 and 9). Regarding its mechanism of action, among several possibilities, it was demonstrated that compound 14c is a prodrug bioactivated, predominantly by L. donovani nitroreductase 1, likely leading to the formation of cytotoxic metabolites that form covalent adducts in the parasite. Finally, compound 14c is lipophilic (measured CHI LogD7.7 = 2.85) but remains soluble in water (measured PBS solubility at pH7.4 = 16 µM), highlighting the antileishmanial potential of the nitrostyrylthiazolidine-2,4-dione scaffold.

5.
Astrobiology ; 22(5): 598-627, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35196460

RESUMEN

Phospholipids are essential components of biological membranes and are involved in cell signalization, in several enzymatic reactions, and in energy metabolism. In addition, phospholipids represent an evolutionary and non-negligible step in life emergence. Progress in the past decades has led to a deeper understanding of these unique hydrophobic molecules and their most pertinent functions in cell biology. Today, a growing interest in "prebiotic lipidomics" calls for a new assessment of these relevant biomolecules.


Asunto(s)
Fosfolípidos , Membrana Celular , Evolución Química , Origen de la Vida , Fosfolípidos/química
6.
iScience ; 23(11): 101677, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33163935

RESUMEN

The reproduction of the shape of giant vesicles usually results in the increase of their "population" size. This may be achieved on giant vesicles by appropriately supplying "mother" vesicles with membranogenic amphiphiles. The next "generation" of "daughter" vesicles obtained from this "feeding" is inherently difficult to distinguish from the original mothers. Here we report on a method for the consecutive feeding with different fatty acids that each provoke membrane growth and detachment of daughter vesicles from glass microsphere-supported phospholipidic mother vesicles. We discovered that a saturated fatty acid was carried over to the next generation of mothers better than two unsaturated congeners. This has an important bearing on the growth and replication of primitive compartments at the early stages of life. Microsphere-supported vesicles are also a precise analytical tool.

7.
PLoS One ; 13(2): e0192975, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29451909

RESUMEN

Giant lipid vesicles (GVs) are emerging models for investigating the properties and reactivity of cell-like microcompartments, providing useful information about plausible protocellular structures in primitive times, as well as for the modern synthetic biology goal of constructing the first artificial cell from its reconstituted and partly modified components. Here we explore a novel methodology of GV purification by microfiltration under reduced pressure, operated by a simple apparatus. The method has been characterized in terms of flow rate, amount of lipid loss, quality of recovered GVs, and size distribution. A case study is reported to show the practicability of GV microfiltration. A clickable fluorescent probe was encapsulated inside GVs; more than 99.9% of the non-entrapped probe was easily and rapidly removed by multiple microfiltrations. This novel methodology is briefly discussed as a future tool for selection experiments on GV populations.


Asunto(s)
Filtración/métodos , Colorantes Fluorescentes/química , Lípidos/aislamiento & purificación , Liposomas/química , Filtros Microporos , Liposomas Unilamelares/aislamiento & purificación
8.
Sci Rep ; 7(1): 18106, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273739

RESUMEN

It is an open question how the chemical structure of prebiotic vesicle-forming amphiphiles complexified to produce robust primitive compartments that could safely host foreign molecules. Previous work suggests that comparingly labile vesicles composed of plausibly prebiotic fatty acids were eventually chemically transformed with glycerol and a suitable phosphate source into phospholipids that would form robust vesicles. Here we show that phosphatidic acid (PA) and phosphatidylethanolamine (PE) lipids can be obtained from racemic dioleoyl glycerol under plausibly prebiotic phosphorylation conditions. Upon in situ hydration of the crude phosphorylation mixtures only those that contained rac-DOPA (not rac-DOPE) generated stable giant vesicles that were capable of encapsulating water-soluble probes, as evidenced by confocal microscopy and flow cytometry. Chemical reaction side-products (identified by IR and MS and quantified by 1H NMR) acted as co-surfactants and facilitated vesicle formation. To mimic the compositional variation of such primitive lipid mixtures, self-assembly of a combinatorial set of the above amphiphiles was tested, revealing that too high dioleoyl glycerol contents inhibited vesicle formation. We conclude that a decisive driving force for the gradual transition from unstable fatty acid vesicles to robust diacylglyceryl phosphate vesicles was to avoid the accumulation of unphosphorylated diacylglycerols in primitive vesicle membranes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA