Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Acc Chem Res ; 56(4): 452-461, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36719833

RESUMEN

ConspectusOrganolead halide-based photovoltaics are one of the state-of-the-art solar cell systems with efficiencies increasing to 25% over the past decade, ascribed to their high light-absorption coefficient, broad wavelength coverage, tunable band structure, and excellent carrier mobility. Indeed, these optical characteristics are highly demanding in photocatalysis and photoluminescence (PL), which also involve the solar energy utilization and charge transport. However, the vast majority of organolead halides are ionically bonded structures and susceptible to degradation upon high-polarity protic molecules (e.g., water (vapor) and alcohol), which are often inevitable in many photochemical applications. Encapsulation is a commonly used stabilization approach by coating protective layers, avoiding the direct contact between organolead halides and polar molecules. However, this may partially hinder the light penetration to the inner hybrid halide materials, and introduce new interface problems that are important in photocatalysis and luminescent sensing. Therefore, developing intrinsically stable organometal halide hybrids is a major target for their applications in optoelectronic applications.In this Account, recent research progress on the synthesis of organolead halide-based coordination polymers for a variety of photoactive applications is described. Herein, we propose a general strategy to advance the intrinsic stability of organometal halide crystalline materials by using coordinating anionic organic linkers, which occupy the excellent photophysical features analogous to those of perovskites. Unlike the organoammonium cations as for ionically bonded structures, the anionic structure-directing agents (e.g., organocarboxylates) render well-defined metal-carboxylate coordination motifs in extended architectures spanning from low-dimensional (0D, 1D) to high-dimensional cationic inorganic Pb-X-Pb (X = F-/Cl-/Br-/I-) sublattices. This family of organolead halide coordination polymers can endure chemically reactive environments over a wide range of pH and aqueous boiling condition, which have been systematically investigated by experimental studies and theoretical calculations. Many chloride/bromide-based coordination polymers show air-stable, broadband self-trapped emission with large Stokes shift and high color rendition, exhibiting the absolute quantum yields of 35-72%. Among them, the porous frameworks with low-dimensional (0D, 1D) inorganic blocks are recognized as a rare class of porous metal-organic frameworks (MOFs) constructed by lead halides as secondary building units (SBUs). They not only occupy substantially higher light-harvesting and carrier-transport properties than conventional metal oxide-based MOFs, but also allow for isoreticular modification to regulate the PL characteristics by guest molecules. More importantly, combining the high stability with excellent carrier characteristics, a layered organolead iodide coordination polymer shows the overall photocatalytic water splitting without the use of any sacrificial agent under simulated sunlight illumination. Given the wide choice of structurally diverse organocarboxylate linkers, we hope this Account provides deep insights on the importance of coordination chemistry in the discovery of a wide family of intrinsically stable organolead halides to expand their photophysical applications.

2.
Angew Chem Int Ed Engl ; 63(29): e202407102, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744673

RESUMEN

Lead halide molecular ferroelectrics represent an important class of luminescent ferroelectrics, distinguished by their high chemical and structural tunability, excellent processability and distinctive luminescent characteristics. However, their inherent instability, prone to decomposition upon exposure to moisture and light, hinders their broader ferroelectric applications. Herein, for the first time, we present a series of isoreticular metal-organic framework (MOF)-type lead halide luminescent ferroelectrics, demonstrating exceptional robustness under ambient conditions for at least 15 months and even when subjected to aqueous boiling conditions. Unlike conventional metal-oxo secondary building units (SBUs) in MOFs adopting highly centrosymmetric structure with limited structural distortion, our lead halide-based MOFs occupy structurally deformable [Pb2X]+ (X=Cl-/Br-/I-) SBUs that facilitate a c-axis-biased displacement of Pb2+ centers and substantially contribute to thermoinducible structural transformation. Importantly, this class of MOF-type lead halide ferroelectrics undergo ferroelectric-to-paraelectric phase transitions with remarkably high Curie temperature of up to 505 K, superior to most of molecular ferroelectrics. Moreover, the covalent bonding between phosphorescent organic component and the light-harvesting inorganic component achieves efficient spin-orbit coupling and intersystem crossing, resulting in long-lived afterglow emission. The compelling combination of high stability, ferroelectricity and afterglow emission exhibited by lead halide MOFs opens up many potential opportunities in energy-conversion applications.

3.
Angew Chem Int Ed Engl ; 63(16): e202316080, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38385586

RESUMEN

Lead halide hybrids have shown great potentials in CO2 photoreduction, but challenging to afford C2+ reduced products, especially using H2O as the reductant. This is largely due to the trade-off problem between instability of the benchmark 3D structures and low carrier mobility of quasi-2D analogues. Herein, the lead halide dimensionality of robust coordination polymers (CP) was modulated by organic ligands differing in a single-atom change (NH vs. CH2), in which the NH groups coordinate with interlamellar [PbI2] clusters to achieve the important 2D→3D transition. This first CP based on 3D cationic lead iodide sublattice possesses both high aqueous stability and a low exciton binding energy of 25 meV that is on the level of ambient thermal energy, achieving artificial photosynthesis of C2H5OH. Photophysical studies combined with theoretical calculations suggest the bridging [PbI2] clusters in the 3D structure not only results in enhanced carrier transport, but also promotes the intrinsic charge polarization to facilitate the C-C coupling. With trace loading of Rh cocatalyst, the apparent quantum efficiency of the 3D CP reaches 1.4 % at 400 nm with a high C2H5OH selectivity of 89.4 % (product basis), which presents one of the best photocatalysts for C2 products to date.

4.
Small ; 19(18): e2206718, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36737849

RESUMEN

Metal-organic framework (MOF) gel, an emerging subtype of MOF structure, is unique in formation and function; however, its evolutionary process remains elusive. Here, the evolution of a model gel-based MOF, UiO-66(Zr) gel, is explored by demonstrating its sequential sol-gel self-assembly and nonclassical gel-crystal transformation. The control of the sol-gel process enables the observation and characterization of structures in each assembly stage (phase-separation, polycondensation, and hindered-crystallization) and facilitates the preparation of hierarchical materials with giant mesopores. The gelation mechanism is tentatively attributed to the formation of zirconium oligomers. By further utilizing the pre-synthesized gel, the nonclassical gel-crystal transformation is achieved by the modulation in an unconventional manner, which sheds light on crystal intermediates and distinct crystallization motions ("growth and splitting" and "aggregation and fusion"). The overall sol-gel and gel-crystal evolutions of UiO-66(Zr) enrich self-assembly and crystallization domains, inspire the design of functional structures, and demand more in-depth research on the intermediates in the future.

5.
Inorg Chem ; 62(48): 19804-19811, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37972342

RESUMEN

Lead halide hybrids templated by coordinating ligands are a class of ultrastable broadband self-trapped emitters that overcome the stability problems of conventional ionically bound halide hybrids. However, enhancing their photoluminescence (PL) performances by crystal engineering remains a huge challenge. Herein, for the first time, we have successfully employed the synthetic strategy of two coordinating ligands to synthesize a series of layered lead halide coordination polymers, [Pb6X10]2+(chdc2-)(2,2'-bpy)2 (X = Cl/Br, chdc = trans-1,4-cyclohexanedicarboxylate), which involves chdc as a pillaring strut and 2,2'-bpy as a chelating ligand. The introduction of a chelating ligand (2,2'-bpy) enables stronger lattice distortion of lead halide layers and enhances UV-light absorption and ligand-to-metal charge transfer (LMCT) process, thereby achieving a substantial improvement of photoluminescence quantum yields (PLQYs) over the control layered materials templated by a single chdc ligand. This class of lead halide hybrids templated by two coordinating ligands exhibit chemical "inertness" after being subjected to various chemical conditions for 48 h, maintaining stable and efficient broadband emission. Density functional theory calculations and femtosecond transient absorption spectra (fs-TA) demonstrate that the broadband emission originates from self-trapped excitons, which are more populated with the LMCT contribution from 2,2'-bpy. This study shows a rational strategy at the molecular level to modulate the photophysical properties of chemically robust lead halide coordination polymers.

6.
Angew Chem Int Ed Engl ; 60(32): 17388-17393, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34075670

RESUMEN

Ultrafine gold nanoclusters (Au-NCs) are susceptible to migrate and aggregate, even in the porosity of many crystalline solids. N-heterocyclic carbenes (NHCs) are a class of structurally diverse ligands for the stabilization of Au-NCs in homogeneous chemistry, showing catalytic reactivity in CO2 activation. Herein, for the first time, we demonstrate a heterogeneous nucleation approach to stabilize ultrasmall and highly dispersed gold nanoclusters in an NHC-functionalized porous matrix. The sizes of gold nanoclusters are tunable from 1.3 nm to 1.8 nm based on the interpenetration of the metal-organic framework (MOF) topology. Control experiments using amine or imidazolium-functionalized MOFs afforded the aggregation of Au species. The resultant Au-NC@MOF composite exhibits a steady and excellent activity in photocatalytic CO2 reduction, superior to control mixtures without NHC-ligand stabilization. Mechanistic studies reveal the synergistic catalytic effect of MOFs and Au-NCs through the MOF-NHC-Au covalent-bonding bridges.

7.
Angew Chem Int Ed Engl ; 58(23): 7818-7822, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-30957350

RESUMEN

The secondary building units in metal-organic frameworks (MOFs) are commonly well-defined metal-oxo clusters or chains with very limited structural strain. Herein, the structurally deformable haloplumbate units that are often observed in organolead halide perovskites have been successfully incorporated into MOFs. The resultant materials are a rare class of isoreticular MOFs exhibiting large Stokes-shifted broadband white-light emission, which is probably induced by self-trapped excitons from electron-phonon coupling in the deformable, zigzag [Pb2 X3 ]+ (X=Cl, Br, or I) chains. In contrast, MOFs with highly symmetric, robust haloplumbate chains only exhibit narrow UV-blue photoemission. The designed MOF-based intrinsic white-light photoemitters have a number of advantages over hybrid inorganic-organic perovskites in terms of stability and tunability, including moisture resistance, facile functionalization of photoactive moieties onto the organic linkers, introduction of luminescent guests.

8.
Angew Chem Int Ed Engl ; 58(9): 2844-2849, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30609209

RESUMEN

The reported metal-organic framework (MOF) catalyst realizes CO2 to methanol transformation under ambient conditions. The MOF is one rare example containing metal-free N-heterocyclic carbene (NHC) moieties, which are installed using an in situ generation strategy involving the incorporation of an imidazolium bromide based linker into the MOF by postsynthetic ligand exchange. Importantly, the resultant NHC-functionalized MOF is the first catalyst capable of performing quantitative hydrogen transfer from silanes to CO2 , thus achieving quantitative (>99 %) methanol yield. Density-functional theory calculations indicate the high catalytic activity of the NHC sites in MOFs are attributed to the decreased reaction barrier of a reaction route involving the formation of an NHC-silane adduct. In addition, the MOF-immobilized NHC catalyst shows enhanced stability for up to eight cycles without base activation, as well as high selectivity towards the desired silyl methoxide product.

9.
J Am Chem Soc ; 140(8): 2985-2994, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29421875

RESUMEN

Metal-organic frameworks (MOFs) as electrocatalysis scaffolds are appealing due to the large concentration of catalytic units that can be assembled in three dimensions. To harness the full potential of these materials, charge transport to the redox catalysts within the MOF has to be ensured. Herein, we report the first electroactive MOF with the UiO/PIZOF topology (Zr(dcphOH-NDI)), i.e., one of the most widely used MOFs for catalyst incorporation, by using redox-active naphthalene diimide-based linkers (dcphOH-NDI). Hydroxyl groups were included on the dcphOH-NDI linker to facilitate proton transport through the material. Potentiometric titrations of Zr(dcphOH-NDI) show the proton-responsive behavior via the -OH groups on the linkers and the bridging Zr-µ3-OH of the secondary building units with pKa values of 6.10 and 3.45, respectively. When grown directly onto transparent conductive fluorine-doped tin oxide (FTO), 1 µm thin films of Zr(dcphOH-NDI)@FTO could be achieved. Zr(dcphOH-NDI)@FTO displays reversible electrochromic behavior as a result of the sequential one-electron reductions of the redox-active NDI linkers. Importantly, 97% of the NDI sites are electrochemically active at applied potentials. Charge propagation through the thin film proceeds through a linker-to-linker hopping mechanism that is charge-balanced by electrolyte transport, giving rise to cyclic voltammograms of the thin films that show characteristics of a diffusion-controlled process. The equivalent diffusion coefficient, De, that contains contributions from both phenomena was measured directly by UV/vis spectroelectrochemistry. Using KPF6 as electrolyte, De was determined to be De(KPF6) = (5.4 ± 1.1) × 10-11 cm2 s-1, while an increase in countercation size to n-Bu4N+ led to a significant decrease of De by about 1 order of magnitude (De(n-Bu4NPF6) = (4.0 ± 2.5) × 10-12 cm2 s-1).

10.
Proc Natl Acad Sci U S A ; 111(52): 18442-7, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512539

RESUMEN

The structural elasticity of metal-organic frameworks (MOFs) is a key property for their functionality. Here, we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants of 7 and 670 ps with no solvent. Filling the MOF pores with dimethylformamide (DMF) slows the structural fluctuations by reducing the ability of the MOF to undergo deformations, and the dynamics of the DMF molecules are also greatly restricted. Methodology advances were required to remove the severe light scattering caused by the macroscopic-sized MOF particles, eliminate interfering oscillatory components from the 2D IR data, and address Förster vibrational excitation transfer.

11.
Angew Chem Int Ed Engl ; 56(46): 14411-14416, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-28905490

RESUMEN

We report a family of cationic lead halide layered materials, formulated as [Pb2 X2 ]2+ [- O2 C(CH)2 CO2- ] (X=F, Cl, Br), exhibiting pronounced broadband white-light emission in bulk form. These well-defined PbX-based structures achieve an external quantum efficiency as high as 11.8 %, which is comparable to the highest reported value (ca.9 %) for broadband phosphors based on layered organolead halide perovskites. More importantly, our cationic materials are ultrastable lead halide materials, which overcome the air/moisture-sensitivity problems of lead perovskites. In contrast to the perovskites and other bulk emitters, the white-light emission intensity of our materials remains undiminished after continuous UV irradiation for 30 days under atmospheric conditions (ca.60 % relative humidity). Our mechanistic studies confirm that the broadband emission is ascribed to short-range electron-phonon coupling in the strongly deformable lattice and generated self-trapped carriers.

12.
J Am Chem Soc ; 137(6): 2191-4, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25650584

RESUMEN

The incorporation of 2,3-dimercaptoterephthalate (thiocatecholate, tcat) into a highly robust UiO-type metal-organic framework (MOF) has been achieved via postsynthetic exchange (PSE). The anionic, electron-donating thiocatecholato motif provides an excellent platform to obtain site-isolated and coordinatively unsaturated soft metal sites in a robust MOF architecture. Metalation of the thiocatechol group with palladium affords unprecedented Pd-mono(thiocatecholato) moieties within these MOFs. Importantly, Pd-metalated MOFs are efficient, heterogeneous, and recyclable catalysts for regioselective functionalization of sp(2) C-H bond. This material is a rare example of chelation-assisted C-H functionalization performed by a MOF catalyst.

13.
Inorg Chem ; 54(14): 6821-8, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26135673

RESUMEN

A manganese bipyridine complex, Mn(bpydc)(CO)3Br (bpydc = 5,5'-dicarboxylate-2,2'-bipyridine), has been incorporated into a highly robust Zr(IV)-based metal-organic framework (MOF) for use as a CO2 reduction photocatalyst. In conjunction with [Ru(dmb)3](2+) (dmb = 4,4'-dimethyl-2,2'-bipyridine) as a photosensitizer and 1-benzyl-1,4-dihydronicotinamide (BNAH) as a sacrificial reductant, Mn-incorporated MOFs efficiently catalyze CO2 reduction to formate in DMF/triethanolamine under visible-light irradiation. The photochemical performance of the Mn-incorporated MOF reached a turnover number of approximately 110 in 18 h, exceeding that of the homogeneous reference systems. The increased activity of the MOF-incorporated Mn catalyst is ascribed to the struts of the framework providing isolated active sites, which stabilize the catalyst and inhibit dimerization of the singly reduced Mn complex. The MOF catalyst largely retained its crystallinity throughout prolonged catalysis and was successfully reused over several catalytic runs.

14.
Inorg Chem ; 54(8): 3883-8, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25849160

RESUMEN

We describe a cationic erbium-based material [Er12(OH)29(H2O)5][O3SCH2CH2SO3]3.5·5H2O. As synthesized, the material is water stable and capable of complete organic anion exchange for a variety of α,ω-alkanedicarboxylates. We chose these anions as initial examples of exchange and as an analog for pharmaceutical waste, some of which have a carboxylate functionality at neutral pH range. Free-floating and partially anchored organosulfonate anions reside between the cationic corrugated layers and allow for exchange. The structure also displays a reversible hydration event above 100 °C. Both the as-synthesized and the exchanged materials are characterized by a variety of analytical techniques.

15.
J Am Chem Soc ; 136(13): 4965-73, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24597832

RESUMEN

An isolated metal-monocatecholato moiety has been achieved in a highly robust metal-organic framework (MOF) by two fundamentally different postsynthetic strategies: postsynthetic deprotection (PSD) and postsynthetic exchange (PSE). Compared with PSD, PSE proved to be a more facile and efficient functionalization approach to access MOFs that could not be directly synthesized under solvothermal conditions. Metalation of the catechol functionality residing in the MOFs resulted in unprecedented Fe-monocatecholato and Cr-monocatecholato species, which were characterized by X-ray absorption spectroscopy, X-band electron paramagnetic resonance spectroscopy, and (57)Fe Mössbauer spectroscopy. The resulting materials are among the first examples of Zr(IV)-based UiO MOFs (UiO = University of Oslo) with coordinatively unsaturated active metal centers. Importantly, the Cr-metalated MOFs are active and efficient catalysts for the oxidation of alcohols to ketones using a wide range of substrates. Catalysis could be achieved with very low metal loadings (0.5-1 mol %). Unlike zeolite-supported, Cr-exchange oxidation catalysts, the MOF-based catalysts reported here are completely recyclable and reusable, which may make them attractive catalysts for 'green' chemistry processes.


Asunto(s)
Catecoles/química , Metales/química , Compuestos Organometálicos/química , Catálisis , Tecnología Química Verde , Modelos Moleculares , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
16.
ChemSusChem ; : e202400504, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666390

RESUMEN

Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.

17.
Chem Sci ; 15(8): 2848-2856, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38404382

RESUMEN

Crystal engineering of metal halide hybrids is critical to investigate their structure-property relationship and advance their photophysical applications, but there have been limited efforts to employ coordination chemistry to precisely control the dimensionality of metal halide sublattices. Herein, we present a coordination-assembly synthetic strategy developed for the rational modulation of lead halide dimensionality, realizing the transition from 2D to 3D architectures. This manipulation is achieved by utilizing three organocarboxylates featuring the identical cyclohexane backbone unit. Specifically, the 1,4-cyclohexanedicarboxylate and 1,2,4,5-cyclohexanetetracarboxylate ligands facilitate the formation of quasi-2D layered structures, characterized by weakly corrugated and strongly corrugated lead halide layers, respectively. Importantly, the introduction of the 1,2,3,4,5,6-cyclohexanehexacarboxylate ligand results in coordination architectures featuring 3D lead chloride/bromide sublattices. The formation of the 3D coordination architectures templated by the 1,2,3,4,5,6-cyclohexanehexacarboxylate ligand affords extended wavelength coverage and superior carrier transport properties compared to their quasi-2D layered analogues. Importantly, both the 2D and 3D lead halide-based coordination polymers exhibit high aqueous stability over a wide pH range, outperforming the conventional ionic-bound lead halides. Notably, the chemically stable 3D lead bromide exhibits efficient photocatalytic ethylbenzene oxidation with the conversion rate of 498 µmol g-1 h-1, substantially higher than its 2D lead bromide counterparts. This work highlights the important role of coordination chemistry in the rational design of metal halide hybrids, which is crucial for advancing their photophysical properties and applications.

18.
Adv Mater ; 36(30): e2403651, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692649

RESUMEN

Photocatalytic CO2 reduction to high-value-added C2+ products presents significant challenges, which is attributed to the slow kinetics of multi-e- CO2 photoreduction and the high thermodynamic barrier for C-C coupling. Incorporating redox-active Co2+/Ni2+ cations into lead halide photocatalysts has high potentials to improve carrier transport and introduce charge polarized bimetallic sites, addressing the kinetic and thermodynamic issues, respectively. In this study, a coordination-driven synthetic strategy is developed to introduce 3d transition metals into the interlamellar region of layered organolead iodides with atomic precision. The resultant bimetallic halide hybrids exhibit selective photoreduction of CO2 to C2H5OH using H2O vapor at the evolution rates of 24.9-31.4 µmol g-1 h-1 and high selectivity of 89.5-93.6%, while pristine layered lead iodide yields only C1 products. Band structure calculations and photoluminescence studies indicate that the interlayer Co2+/Ni2+ species greatly contribute to the frontier orbitals and enhance exciton dissociation into free carriers, facilitating carrier transport between adjacent lead iodide layers. In addition, Bader charge distribution calculations and in situ experimental spectroscopic studies reveal that the asymmetric Ni-O-Pb bimetallic catalytic sites exhibit intrinsic charge polarization, promoting C-C coupling and leading to the formation of the key *OC-CHO intermediate.

19.
J Phys Chem Lett ; 15(33): 8451-8458, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39121497

RESUMEN

Room-temperature phosphorescent (RTP) materials play a crucial role in optical anticounterfeiting science and information security technologies. Ionically bonded organic metal halides have emerged as promising RTP material systems due to their excellent self-assembly and unique photophysical property, but their intrinsic instability largely hinders their advanced practical applications. Herein, we employ a coordination-driven synthetic strategy utilizing organocarboxylates for the synthesis of two isostructural layered lead halide frameworks. The frameworks adopt a new mixed-layered topology, consisting of alternating [Pb10X9]11+ (X = Cl-/Br-) layers and [Pb6XO3]11+ (X = Cl-/Br-) layers that are coordinatively sandwiched by organocarboxylate layers. The frameworks exhibit long-lived green afterglow emission with the long lifetime of up to 45.89 ms and the photoluminescence quantum yield (PLQY) of up to 43.13%. The Pb2+-carboxylate coordination accelerates the metal-to-ligand charge transfer from the light-harvesting lead halide layers to the phosphorescent organic component, promoting efficient spin-orbit coupling and intersystem crossing. Moreover, the coordination networks exhibit good structural robustness under ambient conditions for at least 12 months, as well as stability in boiling water, acidic and basic aqueous environments. The highly efficient afterglow and high structural integrity enable multiple anticounterfeiting applications across diverse chemical environments.

20.
J Am Chem Soc ; 135(45): 16997-7003, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24116734

RESUMEN

A molecular proton reduction catalyst [FeFe](dcbdt)(CO)6 (1, dcbdt = 1,4-dicarboxylbenzene-2,3-dithiolate) with structural similarities to [FeFe]-hydrogenase active sites has been incorporated into a highly robust Zr(IV)-based metal-organic framework (MOF) by postsynthetic exchange (PSE). The PSE protocol is crucial as direct solvothermal synthesis fails to produce the functionalized MOF. The molecular integrity of the organometallic site within the MOF is demonstrated by a variety of techniques, including X-ray absorption spectroscopy. In conjunction with [Ru(bpy)3](2+) as a photosensitizer and ascorbate as an electron donor, MOF-[FeFe](dcbdt)(CO)6 catalyzes photochemical hydrogen evolution in water at pH 5. The immobilized catalyst shows substantially improved initial rates and overall hydrogen production when compared to a reference system of complex 1 in solution. Improved catalytic performance is ascribed to structural stabilization of the complex when incorporated in the MOF as well as the protection of reduced catalysts 1(-) and 1(2-) from undesirable charge recombination with oxidized ascorbate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA