Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 611(7935): 365-373, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323783

RESUMEN

Cells respond to physical stimuli, such as stiffness1, fluid shear stress2 and hydraulic pressure3,4. Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer5. However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na+/H+ exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology.


Asunto(s)
Movimiento Celular , Líquido Extracelular , Metástasis de la Neoplasia , Neoplasias , Viscosidad , Animales , Embrión de Pollo , Ratones , Actinas/metabolismo , Líquido Extracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Canales Catiónicos TRPV , Pez Cebra/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Vía de Señalización Hippo , Esferoides Celulares/patología , Complejo 2-3 Proteico Relacionado con la Actina , Proteína de Unión al GTP rhoA , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Pulmón/patología
2.
Nat Rev Genet ; 22(7): 459-476, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33875884

RESUMEN

Single-cell omics is transforming our understanding of cell biology and disease, yet the systems-level analysis and interpretation of single-cell data faces many challenges. In this Perspective, we describe the impact that fundamental concepts from statistical mechanics, notably entropy, stochastic processes and critical phenomena, are having on single-cell data analysis. We further advocate the need for more bottom-up modelling of single-cell data and to embrace a statistical mechanics analysis paradigm to help attain a deeper understanding of single-cell systems biology.


Asunto(s)
Biología Celular , Interpretación Estadística de Datos , Análisis de la Célula Individual , Animales , Biología Computacional , Entropía , Humanos , Modelos Estadísticos , RNA-Seq , Procesos Estocásticos
3.
Cell ; 148(6): 1123-31, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22424224

RESUMEN

In this Perspective, we synthesize past and present observations in the field of epigenetics to propose a model in which the epigenome can modulate cellular plasticity in development and disease by regulating the effects of noise. In this model, the epigenome facilitates phase transitions in development and reprogramming and mediates canalization, or the ability to produce a consistent phenotypic outcome despite being challenged by variable conditions, during cell fate commitment. After grounding our argument in a discussion of stochastic noise and nongenetic heterogeneity, we explore the hypothesis that distinct chromatin domains, which are known to be dysregulated in disease and remodeled during development, might underlie cellular plasticity more generally. We then present a modern portrayal of Waddington's epigenetic landscape through a mathematical formalism. We speculate that this new framework might impact how we approach disease mechanisms. In particular, it may help to explain the observation that the variability of DNA methylation and gene expression are increased in cancer, thus contributing to tumor cell heterogeneity.


Asunto(s)
Epigénesis Genética , Modelos Genéticos , Animales , Drosophila/crecimiento & desarrollo , Humanos , Neoplasias/genética
4.
Mol Cell ; 72(1): 60-70.e3, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30244832

RESUMEN

Epigenetic control of regulatory networks is only partially understood. Expression of Insulin-like growth factor-II (IGF2) is controlled by genomic imprinting, mediated by silencing of the maternal allele. Loss of imprinting of IGF2 (LOI) is linked to intestinal and colorectal cancers, causally in murine models and epidemiologically in humans. However, the molecular underpinnings of the LOI phenotype are not clear. Surprisingly, in LOI cells, we find a reversal of the relative activities of two canonical signaling pathways triggered by IGF2, causing further rebalancing between pro- and anti-apoptotic signaling. A predictive mathematical model shows that this network rebalancing quantitatively accounts for the effect of receptor tyrosine kinase inhibition in both WT and LOI cells. This mechanism also quantitatively explains both the stable LOI phenotype and the therapeutic window for selective killing of LOI cells, and thus prevention of epigenetically controlled cancers. These findings suggest a framework for understanding epigenetically modified cell signaling.


Asunto(s)
Neoplasias Colorrectales/genética , Epigénesis Genética/genética , Impresión Genómica/genética , Factor II del Crecimiento Similar a la Insulina/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Fenotipo , Transducción de Señal
5.
PLoS Genet ; 19(10): e1010997, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37871105

RESUMEN

Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat, high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genome-wide DNA methylation analyses for each strain and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects revealed a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by epigenetic and transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the farnesoid X receptor pathway, and found that GW4064 exerts strain-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis. Furthermore, GW4064 treatment induced inflammatory-related gene expression changes in NOD, indicating a strain-specific effect in its associated toxicities as well as its therapeutic efficacy. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention and a mouse platform for guiding this approach.


Asunto(s)
Síndrome Metabólico , Humanos , Ratones , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Epigenómica , Proyectos Piloto , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Dieta Alta en Grasa/efectos adversos , Epigénesis Genética
6.
Nucleic Acids Res ; 51(5): 2046-2065, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36762477

RESUMEN

Epigenetic information defines tissue identity and is largely inherited in development through DNA methylation. While studied mostly for mean differences, methylation also encodes stochastic change, defined as entropy in information theory. Analyzing allele-specific methylation in 49 human tissue sample datasets, we find that methylation entropy is associated with specific DNA binding motifs, regulatory DNA, and CpG density. Then applying information theory to 42 mouse embryo methylation datasets, we find that the contribution of methylation entropy to time- and tissue-specific patterns of development is comparable to the contribution of methylation mean, and methylation entropy is associated with sequence and chromatin features conserved with human. Moreover, methylation entropy is directly related to gene expression variability in development, suggesting a role for epigenetic entropy in developmental plasticity.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Animales , Ratones , Metilación de ADN/genética , Entropía , Islas de CpG/genética , ADN/genética
7.
Mol Psychiatry ; 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37100868

RESUMEN

There is a need to consider paternal contributions to autism spectrum disorder (ASD) more strongly. Autism etiology is complex, and heritability is not explained by genetics alone. Understanding paternal gametic epigenetic contributions to autism could help fill this knowledge gap. In the present study, we explored whether paternal autistic traits, and the sperm epigenome, were associated with autistic traits in children at 36 months enrolled in the Early Autism Risk Longitudinal Investigation (EARLI) cohort. EARLI is a pregnancy cohort that recruited and enrolled pregnant women in the first half of pregnancy who already had a child with ASD. After maternal enrollment, EARLI fathers were approached and asked to provide a semen specimen. Participants were included in the present study if they had genotyping, sperm methylation data, and Social Responsiveness Scale (SRS) score data available. Using the CHARM array, we performed genome-scale methylation analyses on DNA from semen samples contributed by EARLI fathers. The SRS-a 65-item questionnaire measuring social communication deficits on a quantitative scale-was used to evaluate autistic traits in EARLI fathers (n = 45) and children (n = 31). We identified 94 significant child SRS-associated differentially methylated regions (DMRs), and 14 significant paternal SRS-associated DMRs (fwer p < 0.05). Many child SRS-associated DMRs were annotated to genes implicated in ASD and neurodevelopment. Six DMRs overlapped across the two outcomes (fwer p < 0.1), and, 16 DMRs overlapped with previous child autistic trait findings at 12 months of age (fwer p < 0.05). Child SRS-associated DMRs contained CpG sites independently found to be differentially methylated in postmortem brains of individuals with and without autism. These findings suggest paternal germline methylation is associated with autistic traits in 3-year-old offspring. These prospective results for autism-associated traits, in a cohort with a family history of ASD, highlight the potential importance of sperm epigenetic mechanisms in autism.

8.
Nat Rev Genet ; 17(5): 284-99, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26972587

RESUMEN

This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of 'tumour progenitor genes'. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: 'epigenetic mediators', corresponding to the tumour progenitor genes suggested earlier; 'epigenetic modifiers' of the mediators, which are frequently mutated in cancer; and 'epigenetic modulators' upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Neoplasias/etiología , Neoplasias/patología , Células Madre/patología , Animales , Progresión de la Enfermedad , Humanos , Mutación/genética
9.
Nucleic Acids Res ; 47(19): e117, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31392989

RESUMEN

In the study of DNA methylation, genetic variation between species, strains or individuals can result in CpG sites that are exclusive to a subset of samples, and insertions and deletions can rearrange the spatial distribution of CpGs. How to account for this variation in an analysis of the interplay between sequence variation and DNA methylation is not well understood, especially when the number of CpG differences between samples is large. Here, we use whole-genome bisulfite sequencing data on two highly divergent mouse strains to study this problem. We show that alignment to personal genomes is necessary for valid methylation quantification. We introduce a method for including strain-specific CpGs in differential analysis, and show that this increases power. We apply our method to a human normal-cancer dataset, and show this improves accuracy and power, illustrating the broad applicability of our approach. Our method uses smoothing to impute methylation levels at strain-specific sites, thereby allowing strain-specific CpGs to contribute to the analysis, while accounting for differences in the spatial occurrences of CpGs. Our results have implications for joint analysis of genetic variation and DNA methylation using bisulfite-converted DNA, and unlocks the use of personal genomes for addressing this question.


Asunto(s)
Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación Completa del Genoma/métodos , Animales , Islas de CpG/genética , Metilación de ADN/genética , Epigénesis Genética , Genoma Humano/genética , Genotipo , Humanos , Ratones , Análisis de Secuencia de ADN
10.
Circulation ; 140(8): 645-657, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31424985

RESUMEN

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.


Asunto(s)
Enfermedad Coronaria/diagnóstico , Islas de CpG/genética , Metilación de ADN/fisiología , Leucocitos/fisiología , Infarto del Miocardio/diagnóstico , Adulto , Anciano , Estudios de Cohortes , Enfermedad Coronaria/epidemiología , Europa (Continente)/epidemiología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Infarto del Miocardio/epidemiología , Grupos de Población , Pronóstico , Estudios Prospectivos , Riesgo , Estados Unidos/epidemiología
11.
BMC Bioinformatics ; 20(1): 175, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30961526

RESUMEN

BACKGROUND: Establishment and maintenance of DNA methylation throughout the genome is an important epigenetic mechanism that regulates gene expression whose disruption has been implicated in human diseases like cancer. It is therefore crucial to know which genes, or other genomic features of interest, exhibit significant discordance in DNA methylation between two phenotypes. We have previously proposed an approach for ranking genes based on methylation discordance within their promoter regions, determined by centering a window of fixed size at their transcription start sites. However, we cannot use this method to identify statistically significant genomic features and handle features of variable length and with missing data. RESULTS: We present a new approach for computing the statistical significance of methylation discordance within genomic features of interest in single and multiple test/reference studies. We base the proposed method on a well-articulated hypothesis testing problem that produces p- and q-values for each genomic feature, which we then use to identify and rank features based on the statistical significance of their epigenetic dysregulation. We employ the information-theoretic concept of mutual information to derive a novel test statistic, which we can evaluate by computing Jensen-Shannon distances between the probability distributions of methylation in a test and a reference sample. We design the proposed methodology to simultaneously handle biological, statistical, and technical variability in the data, as well as variable feature lengths and missing data, thus enabling its wide-spread use on any list of genomic features. This is accomplished by estimating, from reference data, the null distribution of the test statistic as a function of feature length using generalized additive regression models. Differential assessment, using normal/cancer data from healthy fetal tissue and pediatric high-grade glioma patients, illustrates the potential of our approach to greatly facilitate the exploratory phases of clinically and biologically relevant methylation studies. CONCLUSIONS: The proposed approach provides the first computational tool for statistically testing and ranking genomic features of interest based on observed DNA methylation discordance in comparative studies that accounts, in a rigorous manner, for biological, statistical, and technical variability in methylation data, as well as for variability in feature length and for missing data.


Asunto(s)
Epigénesis Genética , Epigenómica , Genómica , Metilación de ADN , Genoma Humano , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Probabilidad
12.
Genome Res ; 26(12): 1730-1741, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27737935

RESUMEN

DNA methylation at the 5-position of cytosine (5mC) is an epigenetic modification that regulates gene expression and cellular plasticity in development and disease. The ten-eleven translocation (TET) gene family oxidizes 5mC to 5-hydroxymethylcytosine (5hmC), providing an active mechanism for DNA demethylation, and it may also provide its own regulatory function. Here we applied oxidative bisulfite sequencing to generate whole-genome DNA methylation and hydroxymethylation maps at single-base resolution in human normal liver and lung as well as paired tumor tissues. We found that 5hmC is significantly enriched in CpG island (CGI) shores while depleted in CGIs themselves, especially in active genes, which exhibit a bimodal distribution of 5hmC around CGI that corresponds to H3K4me1 modifications. Hydroxymethylation on promoters, gene bodies, and transcription termination regions (TTRs) showed strong positive correlation with gene expression within and across tissues, suggesting that 5hmC is a marker of active genes and could play a role in gene expression mediated by DNA demethylation. Comparative analysis of methylomes and hydroxymethylomes revealed that 5hmC is significantly enriched in both tissue-specific DMRs (t-DMRs) and cancer-specific DMRs (c-DMRs), and 5hmC is negatively correlated with methylation changes, especially in non-CGI-associated DMRs. These findings revealed novel reciprocity between epigenetic markers at CGI shores corresponding to differential gene expression in normal tissues and matching tumors. Overall, our study provided a comprehensive analysis of the interplay between the methylome, hydroxymethylome, and histone modifications during tumorigenesis.


Asunto(s)
5-Metilcitosina/análogos & derivados , Metilación de ADN , Hígado/química , Pulmón/química , Neoplasias/genética , Secuenciación Completa del Genoma/métodos , 5-Metilcitosina/análisis , Islas de CpG , ADN/química , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Hígado/patología , Pulmón/patología , Especificidad de Órganos , Regiones Promotoras Genéticas
13.
Bioinformatics ; 34(15): 2673-2675, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29554207

RESUMEN

Motivation: The alignment of bisulfite-treated DNA sequences (BS-seq reads) to a large genome involves a significant computational burden beyond that required to align non-bisulfite-treated reads. In the analysis of BS-seq data, this can present an important performance bottleneck that can be mitigated by appropriate algorithmic and software-engineering improvements. One strategy is to modify the read-alignment algorithms by integrating the logic related to BS-seq alignment, with the goal of making the software implementation amenable to optimizations that lead to higher speed and greater sensitivity than might otherwise be attainable. Results: We evaluated this strategy using Arioc, a short-read aligner that uses GPU (general-purpose graphics processing unit) hardware to accelerate computationally-expensive programming logic. We integrated the BS-seq computational logic into both GPU and CPU code throughout the Arioc implementation. We then carried out a read-by-read comparison of Arioc's reported alignments with the alignments reported by well-known CPU-based BS-seq read aligners. With simulated reads, Arioc's accuracy is equal to or better than the other read aligners we evaluated. With human sequencing reads, Arioc's throughput is at least 10 times faster than existing BS-seq aligners across a wide range of sensitivity settings. Availability and implementation: The Arioc software is available for download at https://github.com/RWilton/Arioc. It is released under a BSD open-source license. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Humanos , Sulfitos
14.
BMC Bioinformatics ; 19(1): 87, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29514626

RESUMEN

BACKGROUND: DNA methylation is a stable form of epigenetic memory used by cells to control gene expression. Whole genome bisulfite sequencing (WGBS) has emerged as a gold-standard experimental technique for studying DNA methylation by producing high resolution genome-wide methylation profiles. Statistical modeling and analysis is employed to computationally extract and quantify information from these profiles in an effort to identify regions of the genome that demonstrate crucial or aberrant epigenetic behavior. However, the performance of most currently available methods for methylation analysis is hampered by their inability to directly account for statistical dependencies between neighboring methylation sites, thus ignoring significant information available in WGBS reads. RESULTS: We present a powerful information-theoretic approach for genome-wide modeling and analysis of WGBS data based on the 1D Ising model of statistical physics. This approach takes into account correlations in methylation by utilizing a joint probability model that encapsulates all information available in WGBS methylation reads and produces accurate results even when applied on single WGBS samples with low coverage. Using the Shannon entropy, our approach provides a rigorous quantification of methylation stochasticity in individual WGBS samples genome-wide. Furthermore, it utilizes the Jensen-Shannon distance to evaluate differences in methylation distributions between a test and a reference sample. Differential performance assessment using simulated and real human lung normal/cancer data demonstrate a clear superiority of our approach over DSS, a recently proposed method for WGBS data analysis. Critically, these results demonstrate that marginal methods become statistically invalid when correlations are present in the data. CONCLUSIONS: This contribution demonstrates clear benefits and the necessity of modeling joint probability distributions of methylation using the 1D Ising model of statistical physics and of quantifying methylation stochasticity using concepts from information theory. By employing this methodology, substantial improvement of DNA methylation analysis can be achieved by effectively taking into account the massive amount of statistical information available in WGBS data, which is largely ignored by existing methods.


Asunto(s)
Teoría de la Información , Modelos Teóricos , Estadística como Asunto , Sulfitos/química , Secuenciación Completa del Genoma/métodos , Secuencia de Bases , Simulación por Computador , Islas de CpG/genética , Metilación de ADN/genética , Entropía , Epigénesis Genética , Ontología de Genes , Genoma Humano , Humanos , Neoplasias Pulmonares/genética , Probabilidad , Navegador Web
15.
PLoS Med ; 14(1): e1002215, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28095459

RESUMEN

BACKGROUND: The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. METHODS AND FINDINGS: We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. CONCLUSIONS: We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases.


Asunto(s)
Índice de Masa Corporal , Enfermedad de la Arteria Coronaria/genética , Metilación de ADN , Regulación de la Expresión Génica , Leucocitos/metabolismo , Metabolismo de los Lípidos , Anciano , Enfermedad de la Arteria Coronaria/etiología , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Metabolismo de los Lípidos/genética , Masculino , Análisis de la Aleatorización Mendeliana , Obesidad/complicaciones , Análisis de Secuencia por Matrices de Oligonucleótidos
16.
Am J Hum Genet ; 94(4): 485-95, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24656863

RESUMEN

Epigenetic marks such as DNA methylation have generated great interest in the study of human disease. However, studies of DNA methylation have not established population-epigenetics principles to guide design, efficient statistics, or interpretation. Here, we show that the clustering of correlated DNA methylation at CpGs was similar to that of linkage-disequilibrium (LD) correlation in genetic SNP variation but for much shorter distances. Some clustering of methylated CpGs appeared to be genetically driven. Further, a set of correlated methylated CpGs related to a single SNP-based LD block was not always physically contiguous-segments of uncorrelated methylation as long as 300 kb could be interspersed in the cluster. Thus, we denoted these sets of correlated CpGs as GeMes, defined as potentially noncontiguous methylation clusters under the control of one or more methylation quantitative trait loci. This type of correlated methylation structure has implications for both biological functions of DNA methylation and for the design, analysis, and interpretation of epigenome-wide association studies.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Fumar/genética
17.
Genome Res ; 24(2): 177-84, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24068705

RESUMEN

Altered DNA methylation occurs ubiquitously in human cancer from the earliest measurable stages. A cogent approach to understanding the mechanism and timing of altered DNA methylation is to analyze it in the context of carcinogenesis by a defined agent. Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with lymphoma and nasopharyngeal carcinoma, but also used commonly in the laboratory to immortalize human B-cells in culture. Here we have performed whole-genome bisulfite sequencing of normal B-cells, activated B-cells, and EBV-immortalized B-cells from the same three individuals, in order to identify the impact of transformation on the methylome. Surprisingly, large-scale hypomethylated blocks comprising two-thirds of the genome were induced by EBV immortalization but not by B-cell activation per se. These regions largely corresponded to hypomethylated blocks that we have observed in human cancer, and they were associated with gene-expression hypervariability, similar to human cancer, and consistent with a model of epigenomic change promoting tumor cell heterogeneity. We also describe small-scale changes in DNA methylation near CpG islands. These results suggest that methylation disruption is an early and critical step in malignant transformation.


Asunto(s)
Linfocitos B/patología , Transformación Celular Neoplásica/genética , Transformación Celular Viral/genética , Metilación de ADN/genética , Herpesvirus Humano 4/genética , Linfocitos B/virología , Carcinogénesis , Islas de CpG/genética , ADN Viral/genética , Genoma Humano , Humanos , Regiones Promotoras Genéticas
18.
Blood ; 125(2): 316-26, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25398938

RESUMEN

Acute myeloid leukemia (AML) is associated with deregulation of DNA methylation; however, many cases do not bear mutations in known regulators of cytosine guanine dinucleotide (CpG) methylation. We found that mutations in WT1, IDH2, and CEBPA were strongly linked to DNA hypermethylation in AML using a novel integrative analysis of The Cancer Genome Atlas data based on Boolean implications, if-then rules that identify all individual CpG sites that are hypermethylated in the presence of a mutation. Introduction of mutant WT1 (WT1mut) into wild-type AML cells induced DNA hypermethylation, confirming mutant WT1 to be causally associated with DNA hypermethylation. Methylated genes in WT1mut primary patient samples were highly enriched for polycomb repressor complex 2 (PRC2) targets, implicating PRC2 dysregulation in WT1mut leukemogenesis. We found that PRC2 target genes were aberrantly repressed in WT1mut AML, and that expression of mutant WT1 in CD34(+) cord blood cells induced myeloid differentiation block. Treatment of WT1mut AML cells with short hairpin RNA or pharmacologic PRC2/enhancer of zeste homolog 2 (EZH2) inhibitors promoted myeloid differentiation, suggesting EZH2 inhibitors may be active in this AML subtype. Our results highlight a strong association between mutant WT1 and DNA hypermethylation in AML and demonstrate that Boolean implications can be used to decipher mutation-specific methylation patterns that may lead to therapeutic insights.


Asunto(s)
Metilación de ADN/genética , Perfilación de la Expresión Génica/métodos , Regulación Leucémica de la Expresión Génica/genética , Genes del Tumor de Wilms , Leucemia Mieloide Aguda/genética , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos
19.
N Engl J Med ; 379(4): 400-401, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30044937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA