Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Reproduction ; 164(4): 155-168, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35950706

RESUMEN

In brief: Elevated temperatures disturbed sperm physiology. Bovine sperm cells exposed to heat shock led to diminished mitochondrial activity, fertilizing ability, increased oxidative stress and caspase activity concomitant with a delay in embryonic developmental kinetics and modulation of sperm-borne microRNAsmiRNAs. Abstract: Sperm function is susceptible to adverse environmental conditions. It has been demonstrated that in vivo and in vitro exposure of bovine sperm to elevated temperature reduces sperm motility and fertilizing potential. However, the cascade of functional, cellular, and molecular events triggered by elevated temperature in the mature sperm cell remains not fully understood. Therefore, the aim of this study was to determine the effect of heat shock on mature sperm cells. Frozen-thawed Holstein sperm were evaluated immediately after Percoll purification (0 h non-incubation control) or after incubation at 35, 38.5, and 41°C for 4 h. Heat shock reduced sperm motility after 3-4 h at 41°C while mitochondrial activity was reduced by 38.5 and 41°C when compared to the control. Heat shock also increased sperm reactive oxygen species production and caspase activity. Heat-shocked sperm had lower fertilizing ability, which led to diminished cleavage and blastocyst rates. Preimplantation embryo developmental kinetics was also slowed and reduced by sperm heat shock. The microRNA (miR) profiling identified >300 miRs in bovine sperm. Among these, three and seven miRs were exclusively identified in sperm cells exposed to 35 and 41°C, respectively. Moreover, miR-181d was enriched in sperm cells exposed to higher temperatures. Hence, elevated temperature altered the physiology of mature sperm cells by perturbing cellular processes and the miR profile, which collectively led to lower fertilizing ability and preimplantation development.


Asunto(s)
MicroARNs , Preservación de Semen , Animales , Caspasas , Bovinos , Respuesta al Choque Térmico , Masculino , MicroARNs/genética , Especies Reactivas de Oxígeno , Semen , Motilidad Espermática , Espermatozoides/fisiología
2.
Mol Reprod Dev ; 87(6): 666-679, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32017313

RESUMEN

Preferentially expressed antigen in melanoma (PRAME) is cancer/testis antigen and a transcriptional repressor, inhibiting the signaling of retinoic acid through the retinoic acid receptor (RAR) for promoting cell proliferation and preventing cell apoptosis in cancer cells. The role of PRAME in testis and germline is unknown. We report here the generation and characterization of an X-linked Prame conditional knockout (cKO) mouse. Although fertile, the testis size (p < .01) and sperm count (p < .05) of the Prame cKO mice were significantly reduced by 12% at 4 months of age compared with the Prame floxed mice. Histological, immunofluorescence with germ cell-specific markers and terminal deoxynucleotidyl transferase dUTP nick end labeling analyses of testis cross-sections at postnatal day 7 (P7), P14, P21, P35, P120, and P365 indicated a significant increase in apoptotic germ cells at P7 and P14 and an increase in abnormal seminiferous tubules at P21 and P35. Germ cells were gradually lost resulting in two different phenotypes in the Prame cKO testes: Sertoli-cell-only for some of the affected tubules in young mice (at P35) and germ cell arrest at spermatogonia stage for other affected tubules in mature mice. Both phenotypes were a consequence of disruption in RAR signaling pathway by the depletion of Prame at a different time point during the first and subsequent rounds of spermatogenesis. The results suggest that Prame plays a minor, but important role in spermatogenesis and different paralogs in the Prame gene family may be functionally and partially redundant.


Asunto(s)
Antígenos de Neoplasias/genética , Espermatogénesis/fisiología , Espermatozoides/citología , Animales , Recuento de Células , Diferenciación Celular/genética , Células Cultivadas , Eliminación de Gen , Técnicas de Silenciamiento del Gen/métodos , Genes Ligados a X , Células Germinativas/citología , Células Germinativas/fisiología , Masculino , Ratones , Ratones Noqueados , Espermatogénesis/genética , Espermatozoides/fisiología , Testículo/citología
3.
Front Genet ; 13: 846345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386283

RESUMEN

The preferentially expressed antigen in melanoma, Y-linked (PRAMEY) is a cancer/testis antigen expressed predominantly in bovine spermatogenic cells, playing an important role in germ cell formation. To better understand PRAMEY's function during spermatogenesis, we studied the dynamics of PRAMEY isoforms by Western blotting (WB) with PRAMEY-specific antibodies. The PRAMEY protein was assessed in the bovine testicular and epididymal spermatozoa, fluid and tissues, and as well as in ejaculated semen. The protein was further examined, at a subcellular level in sperm head and tail, as well as in the subcellular components, including the cytosol, nucleus, membrane, and mitochondria. RNA expression of PRAMEY was also evaluated in testis and epididymal tissues. Our WB results confirmed the previously reported four isoforms of PRAMEY (58, 30, 26, and 13 kDa) in the bovine testis and spermatozoa. We found that testicular spermatozoa expressed the 58 and 30 kDa isoforms. As spermatozoa migrated to the epididymis, they expressed two additional isoforms, 26 and 13 kDa. Similarly, the 58 and 30 kDa isoforms were detected only in the testis fluid, while all four isoforms were detected in fluid from the cauda epididymis. Tissue evaluation indicated a significantly higher expression of the 58 and 13 kDa isoforms in the cauda tissue when compared to both the testis and caput tissue (p < 0.05). These results indicated that testis samples (spermatozoa, fluid, and tissue) expressed predominantly the 58 and 30 kDa PRAMEY isoforms, suggesting their involvement in spermatogenesis. In contrast, the 26 kDa isoform was specific to epididymal sperm and the 13 kDa isoform was marked in samples derived from the cauda epididymis, suggesting their involvement in sperm maturation. Results from the sperm head and tail experiments indicated that the 13 kDa isoform increased 4-fold in sperm tails from caput to cauda, suggesting this isoform may have a significant role in tail function. Additionally, the 13 kDa isoform increased significantly (p < 0.05) in the cytosol during epididymal passage and tended to increase in other subcellular components. The expression of PRAMEY in the sperm subcellular components during epididymal maturation suggests the involvement of PRAMEY, especially the 13 kDa isoform, in sperm motility.

4.
Sci Rep ; 10(1): 13711, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792582

RESUMEN

Autophagy is a physiological mechanism that can be activated under stress conditions. However, the role of autophagy during oocyte maturation has been poorly investigated. Therefore, this study characterized the role of autophagy on developmental competence and gene expression of bovine oocytes exposed to heat shock (HS). Cumulus-oocyte-complexes (COCs) were matured at Control (38.5 °C) and HS (41 °C) temperatures in the presence of 0 and 10 mM 3-methyladenine (3MA; autophagy inhibitor). Western blotting analysis revealed that HS increased autophagy marker LC3-II/LC3-I ratio in oocytes. However, there was no effect of temperature for oocytes matured with 3MA. On cumulus cells, 3MA reduced LC3-II/LC3-I ratio regardless of temperature. Inhibition of autophagy during IVM of heat-shocked oocytes (3MA-41 °C) reduced cleavage and blastocyst rates compared to standard in vitro matured heat-shocked oocytes (IVM-41 °C). Therefore, the magnitude of HS detrimental effects was greater in the presence of autophagy inhibitor. Oocyte maturation under 3MA-41 °C reduced mRNA abundance for genes related to energy metabolism (MTIF3), heat shock response (HSF1), and oocyte maturation (HAS2 and GREM1). In conclusion, autophagy is a stress response induced on heat shocked oocytes. Inhibition of autophagy modulated key functional processes rendering the oocyte more susceptible to the deleterious effects of heat shock.


Asunto(s)
Autofagia , Biomarcadores/metabolismo , Blastocisto/citología , Células del Cúmulo/citología , Regulación de la Expresión Génica , Respuesta al Choque Térmico , Oocitos/citología , Animales , Blastocisto/metabolismo , Bovinos , Células del Cúmulo/metabolismo , Femenino , Técnicas de Maduración In Vitro de los Oocitos , Oocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA