Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(31): e2401246121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39052832

RESUMEN

Modern science is dependent on imaging on the nanoscale, often achieved through processes that detect secondary electrons created by a highly focused incident charged particle beam. Multiple types of measurement noise limit the ultimate trade-off between the image quality and the incident particle dose, which can preclude useful imaging of dose-sensitive samples. Existing methods to improve image quality do not fundamentally mitigate the noise sources. Furthermore, barriers to assigning a physically meaningful scale make the images qualitative. Here, we introduce ion count-aided microscopy (ICAM), which is a quantitative imaging technique that uses statistically principled estimation of the secondary electron yield. With a readily implemented change in data collection, ICAM substantially reduces source shot noise. In helium ion microscopy, we demonstrate 3[Formula: see text] dose reduction and a good match between these empirical results and theoretical performance predictions. ICAM facilitates imaging of fragile samples and may make imaging with heavier particles more attractive.

2.
ArXiv ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39040645

RESUMEN

Modern science is dependent on imaging on the nanoscale, often achieved through processes that detect secondary electrons created by a highly focused incident charged particle beam. Multiple types of measurement noise limit the ultimate trade-off between the image quality and the incident particle dose, which can preclude useful imaging of dose-sensitive samples. Existing methods to improve image quality do not fundamentally mitigate the noise sources. Furthermore, barriers to assigning a physically meaningful scale make the images qualitative. Here we introduce ion count-aided microscopy (ICAM), which is a quantitative imaging technique that uses statistically principled estimation of the secondary electron yield. With a readily implemented change in data collection, ICAM substantially reduces source shot noise. In helium ion microscopy, we demonstrate 3× dose reduction and a good match between these empirical results and theoretical performance predictions. ICAM facilitates imaging of fragile samples and may make imaging with heavier particles more attractive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA