Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 211(2): 287-294, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37256266

RESUMEN

Antisense oligonucleotides (ASOs) are a novel therapeutic strategy that targets a specific gene and suppresses its expression. The cryopyrin-associated periodic syndromes (CAPS) are a spectrum of autoinflammatory diseases characterized by systemic and tissue inflammation that is caused by heterozygous gain-of-function mutations in the nucleotide-binding and oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) gene. The aim of this study was to investigate the efficacy of an Nlrp3-specific ASO treatment in CAPS. An Nlrp3-specific ASO was designed and tested in murine cell lines and bone marrow-derived macrophages (BMDMs) from wild-type and CAPS mouse models. Nlrp3 knock-in mice were treated in vivo with Nlrp3-specific ASO, survival was monitored, and expression of organ-specific Nlrp3 and IL-1ß was measured. Nlrp3-specific ASO treatment of murine cell lines and BMDMs showed a significant downregulation of Nlrp3 and mature IL-1ß protein expression. Ex vivo treatment of Nlrp3 mutant mouse-derived BMDMs with Nlrp3-specific ASO demonstrated significantly reduced IL-1ß release. In vivo, Nlrp3-specific ASO treatment of Nlrp3 mutant mice prolonged survival, reduced systemic inflammation, and decreased tissue-specific expression of Nlrp3 and mature IL-1ß protein. The results of this study demonstrate that Nlrp3-specific ASO treatment downregulates Nlrp3 expression and IL-1ß release in CAPS models, suggesting ASO therapy as a potential treatment of CAPS and other NLRP3-mediated diseases.


Asunto(s)
Síndromes Periódicos Asociados a Criopirina , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Síndromes Periódicos Asociados a Criopirina/genética , Inflamación , Proteínas Portadoras/genética , Interleucina-1beta/metabolismo
2.
Hepatology ; 77(6): 1968-1982, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36059147

RESUMEN

BACKGROUND AND AIMS: Nucleotide-binding oligomerization domain-like receptor-family pyrin domain-containing 3 (NLRP3) inflammasome activation has been shown to result in liver fibrosis. Mechanisms and downstream signaling remain incompletely understood. Here, we studied the role of IL-18 in hepatic stellate cells (HSCs), and its impact on liver fibrosis. APPROACH AND RESULTS: We observed significantly increased serum levels of IL-18 (128.4 pg/ml vs. 74.9 pg/ml) and IL-18 binding protein (BP; 46.50 ng/ml vs. 15.35 ng/ml) in patients with liver cirrhosis compared with healthy controls. Single cell RNA sequencing data showed that an immunoregulatory subset of murine HSCs highly expresses Il18 and Il18r1 . Treatment of cultured primary murine HSC with recombinant mouse IL-18 accelerated their transdifferentiation into myofibroblasts. In vivo , IL-18 receptor-deficient mice had reduced liver fibrosis in a model of fibrosis induced by HSC-specific NLRP3 overactivation. Whole liver RNA sequencing analysis from a murine model of severe NASH-induced fibrosis by feeding a choline-deficient, L-amino acid-defined, high fat diet showed that genes related to IL-18 and its downstream signaling were significantly upregulated, and Il18-/- mice receiving this diet for 10 weeks showed protection from fibrotic changes with decreased number of alpha smooth muscle actin-positive cells and collagen deposition. HSC activation triggered by NLRP3 inflammasome activation was abrogated when IL-18 signaling was blocked by its naturally occurring antagonist IL-18BP. Accordingly, we observed that the severe inflammatory phenotype associated with myeloid cell-specific NLRP3 gain-of-function was rescued by IL-18BP. CONCLUSIONS: Our study highlights the role of IL-18 in the development of liver fibrosis by its direct effect on HSC activation identifying IL-18 as a target to treat liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Inflamasomas , Ratones , Animales , Inflamasomas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Interleucina-18 , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cirrosis Hepática/patología , Fibrosis , Proteínas Portadoras/metabolismo , Hígado/patología
3.
EMBO Rep ; 23(11): e54446, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36194627

RESUMEN

Sterile inflammation is a central element in liver diseases. The immune response following injurious stimuli involves hepatic infiltration of neutrophils and monocytes. Neutrophils are major effectors of liver inflammation, rapidly recruited to sites of inflammation, and can augment the recruitment of other leukocytes. The NLRP3 inflammasome has been increasingly implicated in severe liver inflammation, fibrosis, and cell death. In this study, the role of NLRP3 activation in neutrophils during liver inflammation and fibrosis was investigated. Mouse models with neutrophil-specific expression of mutant NLRP3 were developed. Mutant mice develop severe liver inflammation and lethal autoinflammation phenocopying mice with a systemic expression of mutant NLRP3. NLRP3 activation in neutrophils leads to a pro-inflammatory cytokine and chemokine profile in the liver, infiltration by neutrophils and macrophages, and an increase in cell death. Furthermore, mutant mice develop liver fibrosis associated with increased expression of pro-fibrogenic genes. Taken together, the present work demonstrates how neutrophils, driven by the NLRP3 inflammasome, coordinate other inflammatory myeloid cells in the liver, and propagate the inflammatory response in the context of inflammation-driven fibrosis.


Asunto(s)
Hepatitis , Inflamasomas , Ratones , Animales , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Neutrófilos/metabolismo , Hepatitis/genética , Fibrosis , Inflamación/metabolismo , Interleucina-1beta/metabolismo
4.
J Pediatr Gastroenterol Nutr ; 78(6): 1355-1363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623922

RESUMEN

OBJECTIVES: The primary objective of this study is to further explore associations between social influencers of health and markers of disease severity at the time of presentation of patients with pediatric metabolic dysfunction-associated steatotic liver disease (MASLD) using neighborhood-level Area Deprivation Index (ADI) scores. METHODS: A retrospective cross-sectional study was conducted among 344 pediatric MASLD patients. Each patient received an ADI score based on their 9-digit zip code. Groups were defined as low (≤5) and high (6≥) ADI. Associations between ADI and symptomatology and laboratory values at presentation, as well as initial liver biopsy pathology were tested via analyses of covariance, χ2 testing, and logistic regressions. RESULTS: The mean ADI was 6.54 (standard deviation = 2.09). ADI groups did not significantly differ in age of presentation, type of presentation, or associated conditions, except for the higher ADI group having on average lower vitamin D levels (26.70 vs. 29.91, p = 0.02) and being two times more likely to also be diagnosed with low high-density lipoprotein (HDL) levels (p = 0.04, 95% CI 1.04-3.89). Mean transaminases and histopathologic nonalcoholic fatty liver disease (NAFLD) Activity Scores did not significantly differ between ADI groups. CONCLUSIONS: Pediatric patients with MASLD in this study span the entire spectrum of neighborhood deprivation. There were no differences in presentation characteristics or severity of MASLD, aside from lower HDL-cholesterol and vitamin D values in the high ADI group. Area deprivation was not predictive of more severe disease as assessed by serum transaminases and liver biopsy NAFLD activity scores.


Asunto(s)
Características de la Residencia , Humanos , Masculino , Estudios Transversales , Femenino , Niño , Estudios Retrospectivos , Adolescente , Preescolar , Índice de Severidad de la Enfermedad , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Hígado Graso/etiología , Hígado/patología
5.
J Pharmacol Exp Ther ; 386(2): 242-258, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37308266

RESUMEN

The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex and component of the innate immune system that is activated by exogenous and endogenous danger signals to promote activation of caspase-1 and the maturation and release of the proinflammatory cytokines interleukin (IL)-1ß and IL-18. Inappropriate activation of NLRP3 has been implicated in the pathophysiology of multiple inflammatory and autoimmune diseases, including cardiovascular disease, neurodegenerative diseases, and nonalcoholic steatohepatitis (NASH), thus increasing the clinical interest of this target. We describe in this study the preclinical pharmacologic, pharmacokinetic, and pharmacodynamic properties of a novel and highly specific NLRP3 inhibitor, JT001 (6,7-dihydro-5H-pyrazolo[5,1-b][1,3]oxazine-3-sulfonylurea). In cell-based assays, JT001 potently and selectively inhibited NLRP3 inflammasome assembly, resulting in the inhibition of cytokine release and the prevention of pyroptosis, a form of inflammatory cell death triggered by active caspase-1. Oral administration of JT001 to mice inhibited IL-1ß production in peritoneal lavage fluid at plasma concentrations that correlated with mouse in vitro whole blood potency. Orally administered JT001 was effective in reducing hepatic inflammation in three different murine models, including the Nlrp3A350V /+CreT model of Muckle-Wells syndrome (MWS), a diet-induced obesity NASH model, and a choline-deficient diet-induced NASH model. Significant reductions in hepatic fibrosis and cell damage were also observed in the MWS and choline-deficient models. Our findings demonstrate that blockade of NLRP3 attenuates hepatic inflammation and fibrosis and support the use of JT001 to investigate the role of NLRP3 in other inflammatory disease models. SIGNIFICANCE STATEMENT: Persistent inflammasome activation is the consequence of inherited mutations of NLRP3 and results in the development of cryopyrin-associated periodic syndromes associated with severe systemic inflammation. NLRP3 is also upregulated in nonalcoholic steatohepatitis, a metabolic chronic liver disease currently missing a cure. Selective and potent inhibitors of NLRP3 hold great promise and have the potential to overcome an urgent unmet need.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Dominio Pirina , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/prevención & control , Caspasa 1/metabolismo , Inflamación , Colina/efectos adversos , Interleucina-1beta/metabolismo
6.
Hepatology ; 76(3): 727-741, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34997987

RESUMEN

BACKGROUND AND AIMS: The NOD-like receptor protein 3 (NLRP3) inflammasome is a central contributor to human acute and chronic liver disease, yet the molecular and cellular mechanisms by which its activation precipitates injury remain incompletely understood. Here, we present single cell transcriptomic profiling of livers from a global transgenic tamoxifen-inducible constitutively activated Nlrp3A350V mutant mouse, and we investigate the changes in parenchymal and nonparenchymal liver cell gene expression that accompany inflammation and fibrosis. APPROACH AND RESULTS: Our results demonstrate that NLRP3 activation causes chronic extramedullary myelopoiesis marked by myeloid progenitors that differentiate into proinflammatory neutrophils, monocytes, and monocyte-derived macrophages. We observed prominent neutrophil infiltrates with increased Ly6gHI and Ly6gINT cells exhibiting transcriptomic signatures of granulopoiesis typically found in the bone marrow. This was accompanied by a marked increase in Ly6cHI monocytes differentiating into monocyte-derived macrophages that express transcriptional programs similar to macrophages of NASH models. NLRP3 activation also down-regulated metabolic pathways in hepatocytes and shifted hepatic stellate cells toward an activated profibrotic state based on expression of collagen and extracellular matrix regulatory genes. CONCLUSIONS: These results define the single cell transcriptomes underlying hepatic inflammation and fibrosis precipitated by NLRP3 activation. Clinically, our data support the notion that NLRP3-induced mechanisms should be explored as therapeutic target in NASH-like inflammation.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad del Hígado Graso no Alcohólico , Animales , Fibrosis , Humanos , Inflamasomas/metabolismo , Inflamación , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Proteínas NLR
7.
Hepatology ; 73(1): 437-448, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32740968

RESUMEN

Single cell transcriptomics has emerged as a powerful lens through which to study the molecular diversity of complex tissues such as the liver, during health and disease, both in animal models and in humans. The earliest gene expression methods measured bulk tissue RNA, but the results were often confusing because they derived from the combined transcriptomes of many different cell types in unknown proportions. To better delineate cell-type-specific expression, investigators developed cell isolation, purification, and sorting protocols, yet still, the RNA derived from ensembles of cells obscured recognition of cellular heterogeneity. Profiling transcriptomes at the single-cell level has opened the door to analyses that were not possible in the past. In this review, we discuss the evolution of single cell transcriptomics and how it has been applied for the study of liver physiology and pathobiology to date.


Asunto(s)
Perfilación de la Expresión Génica , Hígado/patología , Hígado/fisiología , Análisis de la Célula Individual , Animales , Humanos , Análisis de Secuencia de ARN
8.
Diabetes Obes Metab ; 24(7): 1267-1276, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35297549

RESUMEN

AIM: To examine the determinants and metabolic impact of the reduction in fasting and postload insulin levels after a low n-6 to n-3 polyunsaturated fatty acid (PUFA) ratio diet in obese youth. MATERIALS AND METHODS: Insulin secretion and clearance were assessed by measuring and modelling plasma insulin and C-peptide in 17 obese youth who underwent a nine-point, 180-minute oral glucose tolerance test (OGTT) before and after a 12-week, eucaloric low n-6:n-3 polyunsaturated fatty acid (PUFA) ratio diet. Hepatic fat content was assessed by repeated abdominal magnetic resonance imaging. RESULTS: Insulin clearance at fasting and during the OGTT was significantly increased after the diet, while body weight, glucose levels, absolute and glucose-dependent insulin secretion, and model-derived variables of ß-cell function were not affected. Dietary-induced changes in insulin clearance positively correlated with changes in whole-body insulin sensitivity and ß-cell glucose sensitivity, but not with changes in hepatic fat. Subjects with greater increases in insulin clearance showed a worse metabolic profile at enrolment, characterized by impaired insulin clearance, ß-cell glucose sensitivity, and glucose tolerance, and benefitted the most from the diet, achieving greater improvements in glucose-stimulated hyperinsulinaemia, insulin resistance, and ß-cell function. CONCLUSIONS: We showed that a 12-week low n-6:n-3 PUFA ratio diet improves hyperinsulinaemia by increasing fasting and postload insulin clearance in obese youth, independently of weight loss, glucose concentrations, and insulin secretion.


Asunto(s)
Ácidos Grasos Omega-3 , Hiperinsulinismo , Resistencia a la Insulina , Adolescente , Glucemia/metabolismo , Dieta , Glucosa , Humanos , Hiperinsulinismo/etiología , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Insulina Regular Humana , Obesidad/complicaciones , Obesidad/metabolismo
9.
Gut ; 70(10): 1954-1964, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33208407

RESUMEN

OBJECTIVE: Lipotoxic hepatocyte injury is a primary event in non-alcoholic steatohepatitis (NASH), but the mechanisms of lipotoxicity are not fully defined. Sphingolipids and free cholesterol (FC) mediate hepatocyte injury, but their link in NASH has not been explored. We examined the role of free cholesterol and sphingomyelin synthases (SMSs) that generate sphingomyelin (SM) and diacylglycerol (DAG) in hepatocyte pyroptosis, a specific form of programmed cell death associated with inflammasome activation, and NASH. DESIGN: Wild-type C57BL/6J mice were fed a high fat and high cholesterol diet (HFHCD) to induce NASH. Hepatic SMS1 and SMS2 expressions were examined in various mouse models including HFHCD-fed mice and patients with NASH. Pyroptosis was estimated by the generation of the gasdermin-D N-terminal fragment. NASH susceptibility and pyroptosis were examined following knockdown of SMS1, protein kinase Cδ (PKCδ), or the NLR family CARD domain-containing protein 4 (NLRC4). RESULTS: HFHCD increased the hepatic levels of SM and DAG while decreasing the level of phosphatidylcholine. Hepatic expression of Sms1 but not Sms2 was higher in mouse models and patients with NASH. FC in hepatocytes induced Sms1 expression, and Sms1 knockdown prevented HFHCD-induced NASH. DAG produced by SMS1 activated PKCδ and NLRC4 inflammasome to induce hepatocyte pyroptosis. Depletion of Nlrc4 prevented hepatocyte pyroptosis and the development of NASH. Conditioned media from pyroptotic hepatocytes activated the NOD-like receptor family pyrin domain containing 3 inflammasome (NLRP3) in Kupffer cells, but Nlrp3 knockout mice were not protected against HFHCD-induced hepatocyte pyroptosis. CONCLUSION: SMS1 mediates hepatocyte pyroptosis through a novel DAG-PKCδ-NLRC4 axis and holds promise as a therapeutic target for NASH.


Asunto(s)
Hepatocitos/enzimología , Enfermedad del Hígado Graso no Alcohólico/enzimología , Piroptosis , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Semin Liver Dis ; 41(2): 150-162, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34107544

RESUMEN

Traditional concepts have classically viewed resolution of inflammation as a passive process yet insight into the pathways by which inflammation is resolved has challenged this idea. Resolution has been revealed as a highly dynamic and active event that is essential to counteract the dysregulated inflammatory response that drives diverse disease states. Abrogation of the hepatic inflammatory response through the stimulation of proresolving mechanisms represents a new paradigm in the setting of chronic inflammatory-driven liver diseases. Elucidation of the role of different cells of the innate and adaptive immune system has highlighted the interplay between them as an important orchestrator of liver repair. A finely tuned interaction between neutrophils and macrophages has risen as revolutionary mechanism that drives the restoration of hepatic function and architecture. Specialized proresolving mediators have also been shown to act as stop signals of the inflammatory response and promote resolution as well as tissue regeneration. In this review, we discuss the discovery and understanding of the mechanisms by which inflammation is resolved and highlight novel proresolving pathways that represent promising therapeutic strategies.


Asunto(s)
Hepatitis , Inflamación , Humanos , Mediadores de Inflamación , Macrófagos
11.
Semin Liver Dis ; 41(4): 421-434, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34233370

RESUMEN

The acronym nonalcoholic fatty-liver disease (NAFLD) groups a heterogeneous patient population. Although in many patients the primary driver is metabolic dysfunction, a complex and dynamic interaction of different factors (i.e., sex, presence of one or more genetic variants, coexistence of different comorbidities, diverse microbiota composition, and various degrees of alcohol consumption among others) takes place to determine disease subphenotypes with distinct natural history and prognosis and, eventually, different response to therapy. This review aims to address this topic through the analysis of existing data on the differential contribution of known factors to the pathogenesis and clinical expression of NAFLD, thus determining the different clinical subphenotypes observed in practice. To improve our understanding of NAFLD heterogeneity and the dominant drivers of disease in patient subgroups would predictably impact on the development of more precision-targeted therapies for NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Comorbilidad , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/genética , Pronóstico
12.
J Hepatol ; 74(1): 156-167, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763266

RESUMEN

BACKGROUND & AIMS: Increased hepatocyte death contributes to the pathology of acute and chronic liver diseases. However, the role of hepatocyte pyroptosis and extracellular inflammasome release in liver disease is unknown. METHODS: We used primary mouse and human hepatocytes, hepatocyte-specific leucine 351 to proline Nlrp3KICreA mice, and GsdmdKO mice to investigate pyroptotic cell death in hepatocytes and its impact on liver inflammation and damage. Extracellular NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes were isolated from mutant NLRP3-YFP HEK cells and internalisation was studied in LX2 and primary human hepatic stellate cells. We also examined a cohort of 154 adult patients with biopsy-proven non-alcoholic fatty liver disease (Sir Charles Gairdner Hospital, Nedlands, Western Australia). RESULTS: We demonstrated that primary mouse and human hepatocytes can undergo pyroptosis upon NLRP3 inflammasome activation with subsequent release of NLRP3 inflammasome proteins that amplify and perpetuate inflammasome-driven fibrogenesis. Pyroptosis was inhibited by blocking caspase-1 and gasdermin D activation. The activated form of caspase-1 was detected in the livers and in serum from patients with non-alcoholic steatohepatitis and correlated with disease severity. Nlrp3KICreA mice showed spontaneous liver fibrosis under normal chow diet, and increased sensitivity to liver damage and inflammation after treatment with low dose lipopolysaccharide. Mechanistically, hepatic stellate cells engulfed extracellular NLRP3 inflammasome particles leading to increased IL-1ß secretion and α-smooth muscle actin expression. This effect was abrogated when cells were pre-treated with the endocytosis inhibitor cytochalasin B. CONCLUSIONS: These results identify hepatocyte pyroptosis and release of inflammasome components as a novel mechanism to propagate liver injury and liver fibrosis development. LAY SUMMARY: Our findings identify a novel mechanism of inflammation in the liver. Experiments in cell cultures, mice, and human samples show that a specific form of cell death, called pyroptosis, leads to the release of complex inflammatory particles, the NLRP3 inflammasome, from inside hepatocytes into the extracellular space. From there they are taken up by other cells and thereby mediate inflammatory and pro-fibrogenic stress signals. The discovery of this mechanism may lead to novel treatments for chronic liver diseases in the future.


Asunto(s)
Hepatocitos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Cirrosis Hepática , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/inmunología , Animales , Caspasa 1/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Cirrosis Hepática/inmunología , Cirrosis Hepática/metabolismo , Ratones , Ratones Endogámicos NOD , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Sistemas de Translocación de Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Mol Ther ; 28(2): 653-663, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31585800

RESUMEN

The granulocyte-specific microRNA-223 (miR-223) has recently emerged as a negative regulator of NOD-like receptor 3 (NLRP3) expression, a central key player in chronic hepatic injuries such as fibrotic nonalcoholic steatohepatitis (NASH), as well as in other liver conditions including acute hepatitis. In this study, we evaluated the therapeutic effect of the synthetic miR-223 analog miR-223 3p in a murine model of lipopolysaccharide (LPS)/D-GalN-induced endotoxin acute hepatitis (EAH) or fibrotic NASH resultant of long-term feeding with a high-fat, fructose, and cholesterol (FFC) diet. miR-223 3p ameliorated the infiltration of monocytes, neutrophils, and early activated macrophages and downregulated the transcriptional expression of the pro-inflammatory cytokines Il6 and Il12 and the chemokines Ccl2, Ccl3, Cxcl1, and Cxcl2 in EAH. In fibrotic NASH, treatment with miR-223 3p led to a remarkable mitigation of fibrosis development and activation of hepatic stellate cells (HSCs). miR-223 3p disrupted the activation of the NLRP3 inflammasome by impairing the synthesis of cleaved interleukin-1ß (IL-1ß), mature IL-1ß, and NLRP3, and the activation of caspase-1 p10 in both EAH and fibrotic NASH. Our data enlightens miR-223 3p as a post-transcriptional approach to treat acute and chronic hepatitis by silencing the activation of the NLRP3 inflammasome.


Asunto(s)
Inflamasomas/metabolismo , Hepatopatías/etiología , Hepatopatías/metabolismo , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Interferencia de ARN , Animales , Biomarcadores , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica , Lipopolisacáridos/efectos adversos , Hepatopatías/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
15.
Langenbecks Arch Surg ; 406(1): 1-17, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32833053

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) has become the most common form of chronic liver disease in both adults and children worldwide. Understanding the pathogenic mechanisms behind NAFLD provides the basis for identifying risk factors, such as metabolic syndrome, pancreatoduodenectomy, and host genetics, that lead to the onset and progression of the disease. The progression from steatosis to more severe forms, such as steatohepatitis, fibrosis, and cirrhosis, leads to an increased number of liver and non-liver complications. PURPOSE: NAFLD-associated end-stage liver disease (ESLD) and hepatocellular carcinoma (HCC) often require surgery as the only curative treatment. In particular, the presence of NAFLD together with the coexisting metabolic comorbidities that usually occur in these patients requires careful preoperative diagnosis and peri-/postoperative management. Bariatric surgery, liver resection, and liver transplantation (LT) have shown favorable results for weight loss, HCC, and ESLD in patients with NAFLD. The LT demand and the increasing spread of NAFLD in the donor pool reinforce the already existing lack of donor organs. CONCLUSION: In this review, we will discuss the diverse mechanisms underlying NAFLD, its implications for surgery, and the challenges for patient management.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Carcinoma Hepatocelular/patología , Progresión de la Enfermedad , Humanos , Hígado/patología , Cirrosis Hepática/patología , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/patología
16.
Semin Liver Dis ; 40(3): 298-306, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32526788

RESUMEN

Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (ASH) are advanced forms of fatty liver diseases that are associated with a high morbidity and mortality worldwide. Patients with ASH or NASH are more susceptible to the progression of fibrosis and cirrhosis up to the development of hepatocellular carcinoma. Currently, there are limited medical therapies available. Accompanied by the asymptomatic disease progression, the demand for liver transplants is high. This review provides an overview about the growing evidence for a central role of NLR family pyrin domain containing 3 (NLRP3) inflammasome, a multiprotein complex that acts as a central driver of inflammation via activation of caspase 1, maturation and release of pro-inflammatory cytokines including interleukin-1ß, and trigger of inflammatory pyroptotic cell death in both NASH and ASH. We also discuss potential therapeutic approaches targeting NLRP3 inflammasome and related upstream and downstream pathways to develop prognostic biomarkers and medical treatments for both liver diseases.


Asunto(s)
Hígado Graso Alcohólico/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Progresión de la Enfermedad , Femenino , Humanos , Inflamasomas/metabolismo , Masculino , Ratones
17.
Hepatology ; 69(2): 845-859, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30180270

RESUMEN

The NLR family pyrin domain-containing 3 (NLRP3) inflammasome plays an important role in liver fibrosis (LF) development. However, the mechanisms involved in NLRP3-induced fibrosis are unclear. Our aim was to test the hypothesis that the NLRP3 inflammasome in hepatic stellate cells (HSCs) can directly regulate their activation and contribute to LF. Primary HSCs isolated from wild-type (WT), Nlrp3-/- , or Nlrp3L351PneoR knock-in crossed to inducible (estrogen receptor Cre-CreT) mice were incubated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP), or 4OH-tamoxifen, respectively. HSC-specific Nlrp3L351P knock-in mice were generated by crossing transgenic mice expressing lecithin retinol acyltransferase (Lrat)-driven Cre and maintained on standard rodent chow for 6 months. Mice were then sacrificed; liver tissue and serum were harvested. Nlrp3 inflammasome activation along with HSC phenotype and fibrosis were assessed by RT-PCR, western blotting, fluorescence-activated cell sorting (FACS), enzyme-linked immunosorbent assay, immunofluorescence (IF), and immunohistochemistry (IHC). Stimulated WT HSCs displayed increased levels of NLRP3 inflammasome-induced reactive oxygen species (ROS) production and cathepsin B activity, accompanied by an up-regulation of mRNA and protein levels of fibrotic makers, an effect abrogated in Nlrp3-/- HSCs. Nlrp3L351P CreT HSCs also showed elevated mRNA and protein expression of fibrotic markers 24 hours after inflammasome activation induced with 4-hydroxytamoxifen (4OHT). Protein and mRNA expression levels of fibrotic markers were also found to be increased in isolated HSCs and whole liver tissue from Nlrp3L351P Lrat Cre mice compared to WT. Liver sections from 24-week-old NlrpL351P Lrat Cre mice showed fibrotic changes with increased alpha smooth muscle actin (αSMA) and desmin-positive cells and collagen deposition, independent of inflammatory infiltrates; these changes were also observed after LPS challenge in 8-week-old NlrpL351P Lrat Cre mice. Conclusion: Our results highlight a direct role for the NLRP3 inflammasome in the activation of HSCs directly triggering LF.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Inflamasomas/metabolismo , Cirrosis Hepática/etiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Biomarcadores/metabolismo , Femenino , Lipopolisacáridos , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miofibroblastos/metabolismo
18.
J Nutr ; 150(9): 2314-2321, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32652034

RESUMEN

BACKGROUND: Recent literature suggests that the Western diet's imbalance between high ω-6 (n-6) and low ω-3 (n-3) PUFA intake contributes to fatty liver disease in obese youth. OBJECTIVES: We tested whether 12 wk of a low n-6:n-3 PUFA ratio (4:1) normocaloric diet mitigates fatty liver and whether the patatin-like containing domain phospholipase 3 (PNPLA3) rs738409 variant affects the response. METHODS: In a single-arm unblinded study, obese youth 9-19 y of age with nonalcoholic fatty liver disease were treated with a normocaloric low n-6:n-3 PUFA ratio diet for 12 wk. The primary outcome was change in hepatic fat fraction (HFF%), measured by abdominal MRI. Metabolic parameters included alanine aminotransferase (ALT), lipids, measures of insulin sensitivity, and plasma oxidized linoleic acid metabolites (OXLAMs). Outcomes were also analyzed by PNPLA3 rs738409 genotype. Wilcoxon's signed rank test, the Mann-Whitney U test, and covariance pattern modeling were used. RESULTS: Twenty obese adolescents (median age: 13.3 y; IQR: 10.5-16.4 y) were enrolled and 17 completed the study. After 12 wk of dietary intervention, HFF% decreased by 25.8% (P = 0.009) despite stable weight. We observed a 34.4% reduction in ALT (P = 0.001), 21.9% reduction in triglycerides (P = 0.046), 3.28% reduction in LDL cholesterol (P = 0.071), and a 26.3% improvement in whole body insulin sensitivity (P = 0.032). The OXLAMs 9-hydroxy-octadecandienoic acid (9-HODE) (P = 0.011), 13-HODE (P = 0.007), and 9-oxo-octadecadienoic acid (9-oxoODE) (P = 0.024) decreased after 12 wk. HFF% declined in both the not-at-risk (CC/CG) and at-risk (GG) PNPLA3 rs738409 genotype groups, with significant (P = 0.016) HFF% reduction in the GG group. Changes in 9-HODE (P = 0.023), 9-oxoODE (P = 0.009), and 13-oxoODE (P = 0.003) differed between the 2 genotype groups over time. CONCLUSIONS: These data suggest that, independently of weight loss, a low n-6:n-3 PUFA diet ameliorates the metabolic phenotype of adolescents with fatty liver disease and that response to this diet is modulated by the PNPLA3 rs738409 genotype.This trial was registered at clinicaltrials.gov as NCT01556113.


Asunto(s)
Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Hígado Graso/dietoterapia , Obesidad Infantil/dietoterapia , Adolescente , Niño , Dieta , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/química , Ácidos Grasos Omega-6/farmacología , Femenino , Humanos , Masculino
19.
Brain Behav Immun ; 84: 106-114, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31759091

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious, debilitating disorder with a wide spectrum of symptoms, including pain, depression, and neurocognitive deterioration. Over 17 million people around the world have ME/CFS, predominantly women with peak onset at 30-50 years. Given the wide spectrum of symptoms and unclear etiology, specific biomarkers for diagnosis and stratification of ME/CFS are lacking. Here we show that actin network proteins in circulating extracellular vesicles (EVs) offer specific non-invasive biomarkers for ME/CFS. We found that circulating EVs were significantly increased in ME/CFS patients correlating to C-reactive protein, as well as biological antioxidant potential. Area under the receiver operating characteristic curve for circulating EVs was 0.80, allowing correct diagnosis in 90-94% of ME/CFS cases. From two independent proteomic analyses using circulating EVs from ME/CFS, healthy controls, idiopathic chronic fatigue, and depression, proteins identified from ME/CFS patients are involved in focal adhesion, actin skeletal regulation, PI3K-Akt signaling pathway, and Epstein-Barr virus infection. In particular, talin-1, filamin-A, and 14-3-3 family proteins were the most abundant proteins, representing highly specific ME/CFS biomarkers. Our results identified circulating EV number and EV-specific proteins as novel biomarkers for diagnosing ME/CFS, providing important information on the pathogenic mechanisms of ME/CFS.


Asunto(s)
Actinas/metabolismo , Vesículas Extracelulares/metabolismo , Síndrome de Fatiga Crónica/sangre , Filaminas/sangre , Talina/sangre , Proteínas 14-3-3 , Adulto , Biomarcadores/sangre , Depresión/sangre , Femenino , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteómica
20.
J Immunol ; 201(10): 3017-3035, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30322964

RESUMEN

Innate immune mechanisms play an important role in inflammatory chronic liver diseases. In this study, we investigated the role of type I or invariant NKT (iNKT) cell subsets in the progression of nonalcoholic steatohepatitis (NASH). We used α-galactosylceramide/CD1d tetramers and clonotypic mAb together with intracytoplasmic cytokine staining to analyze iNKT cells in choline-deficient l-amino acid-defined (CDAA)-induced murine NASH model and in human PBMCs, respectively. Cytokine secretion of hepatic iNKT cells in CDAA-fed C57BL/6 mice altered from predominantly IL-17+ to IFN-γ+ and IL-4+ during NASH progression along with the downmodulation of TCR and NK1.1 expression. Importantly, steatosis, steatohepatitis, and fibrosis were dependent upon the presence of iNKT cells. Hepatic stellate cell activation and infiltration of neutrophils, Kupffer cells, and CD8+ T cells as well as expression of key proinflammatory and fibrogenic genes were significantly blunted in Jα18-/- mice and in C57BL/6 mice treated with an iNKT-inhibitory RAR-γ agonist. Gut microbial diversity was significantly impacted in Jα18-/- and in CDAA diet-fed mice. An increased frequency of CXCR3+IFN-γ+T-bet+ and IL-17A+ iNKT cells was found in PBMC from NASH patients in comparison with nonalcoholic fatty liver patients or healthy controls. Consistent with their in vivo activation, iNKT cells from NASH patients remained hyporesponsive to ex-vivo stimulation with α-galactosylceramide. Accumulation of plasmacytoid dendritic cells in both mice and NASH patients suggest their role in activation of iNKT cells. In summary, our findings indicate that the differential activation of iNKT cells play a key role in mediating diet-induced hepatic steatosis and fibrosis in mice and its potential involvement in NASH progression in humans.


Asunto(s)
Activación de Linfocitos/inmunología , Células T Asesinas Naturales/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Progresión de la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Subgrupos de Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA