Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Genet ; 53: 313-326, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31424970

RESUMEN

Caenorhabditis elegans has long been a laboratory model organism with no known natural pathogens. In the past ten years, however, natural viruses have been isolated from wild-caught C. elegans (Orsay virus) and its relative Caenorhabditis briggsae (Santeuil virus, Le Blanc virus, and Melnik virus). All are RNA positive-sense viruses related to Nodaviridae; they infect intestinal cells and are horizontally transmitted. The Orsay virus capsid structure has been determined and the virus can be reconstituted by transgenesis of the host. Recent use of the Orsay virus has enabled researchers to identify evolutionarily conserved proviral and antiviral genes that function in nematodes and mammals. These pathways include endocytosis through SID-3 and WASP; a uridylyltransferase that destabilizes viral RNAs by uridylation of their 3' end; ubiquitin protein modifications and turnover; and the RNA interference pathway, which recognizes and degrades viral RNA.


Asunto(s)
Caenorhabditis elegans/virología , Interacciones Huésped-Patógeno/genética , Nodaviridae/fisiología , Animales , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , ARN de Helminto/metabolismo , Tropismo Viral
2.
PLoS Pathog ; 20(1): e1011947, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38232128

RESUMEN

Microbes associated with an organism can significantly modulate its susceptibility to viral infections, but our understanding of the influence of individual microbes remains limited. The nematode Caenorhabditis elegans is a model organism that in nature inhabits environments rich in bacteria. Here, we examine the impact of 71 naturally associated bacteria on C. elegans susceptibility to its only known natural virus, the Orsay virus. Our findings reveal that viral infection of C. elegans is significantly influenced by monobacterial environments. Compared to an Escherichia coli environmental reference, the majority of tested bacteria reduced C. elegans susceptibility to viral infection. This reduction is not caused by virion degradation or poor animal nutrition by the bacteria. The repression of viral infection by the bacterial strains Chryseobacterium JUb44 and Sphingobacterium BIGb0172 does not require the RIG-I homolog DRH-1, which is known to activate antiviral responses such as RNA interference and transcriptional regulation. Our research highlights the necessity of considering natural biotic environments in viral infection studies and opens the way future research on host-microbe-virus interactions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Virosis , Virus , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interferencia de ARN , Virosis/genética , Virus/metabolismo
3.
PLoS Pathog ; 20(6): e1012259, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861582

RESUMEN

Antagonistic relationships such as host-virus interactions potentially lead to rapid evolution and specificity in interactions. The Orsay virus is so far the only horizontal virus naturally infecting the nematode C. elegans. In contrast, several related RNA viruses infect its congener C. briggsae, including Santeuil (SANTV) and Le Blanc (LEBV) viruses. Here we focus on the host's intraspecific variation in sensitivity to these two intestinal viruses. Many temperate-origin C. briggsae strains, including JU1264 and JU1498, are sensitive to both, while many tropical strains, such as AF16, are resistant to both. Interestingly, some C. briggsae strains exhibit a specific resistance, such as the HK104 strain, specifically resistant to LEBV. The viral sensitivity pattern matches the strains' geographic and genomic relationships. The heavily infected strains mount a seemingly normal small RNA response that is insufficient to suppress viral infection, while the resistant strains show no small RNA response, suggesting an early block in viral entry or replication. We use a genetic approach from the host side to map genomic regions participating in viral resistance polymorphisms. Using Advanced Intercrossed Recombinant Inbred Lines (RILs) between virus-resistant AF16 and SANTV-sensitive HK104, we detect Quantitative Trait Loci (QTLs) on chromosomes IV and III. Building RILs between virus-sensitive JU1498 and LEBV-resistant HK104 followed by bulk segregant analysis, we identify a chromosome II QTL. In both cases, further introgressions of the regions confirmed the QTLs. This diversity provides an avenue for studying virus entry, replication, and exit mechanisms, as well as host-virus specificity and the host response to a specific virus infection.


Asunto(s)
Caenorhabditis , Animales , Caenorhabditis/genética , Caenorhabditis/virología , Virus ARN/genética , Especificidad del Huésped , Infecciones por Virus ARN/virología
4.
EMBO Rep ; 24(12): e58116, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37983674

RESUMEN

The animal germline lineage needs to be maintained along generations. However, some Caenorhabditis elegans wild isolates display a mortal germline phenotype, leading to sterility after several generations at 25°C. Using a genome-wide association approach, we detect a significant peak on chromosome III around 5 Mb, confirmed by introgressions. Thus, a seemingly deleterious genotype is maintained at intermediate frequency in the species. Environmental rescue is a likely explanation, and indeed associated bacteria and microsporidia suppress the phenotype of wild isolates as well as mutants in small RNA inheritance (nrde-2) and histone modifications (set-2). Escherichia coli strains of the K-12 lineage suppress the phenotype compared to B strains. By shifting a wild strain from E. coli K-12 to E. coli B, we find that memory of the suppressing condition is maintained over several generations. Thus, the mortal germline phenotype of wild C. elegans is in part revealed by laboratory conditions and may represent variation in epigenetic inheritance and environmental interactions. This study also points to the importance of non-genetic memory in the face of environmental variation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Escherichia coli/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Células Germinativas , Proteínas de Caenorhabditis elegans/genética
5.
Development ; 148(5)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33593818

RESUMEN

Few studies have measured the robustness to perturbations of the final position of a long-range migrating cell. In the nematode Caenorhabditis elegans, the QR neuroblast migrates anteriorly, while undergoing three division rounds. We study the final position of two of its great-granddaughters, the end of migration of which was previously shown to depend on a timing mechanism. We find that the variance in their final position is similar to that of other long-range migrating neurons. As expected from the timing mechanism, the position of QR descendants depends on body size, which we varied by changing maternal age or using body size mutants. Using a mathematical model, we show that body size variation is partially compensated for. Applying environmental perturbations, we find that the variance in final position increased following starvation at hatching. The mean position is displaced upon a temperature shift. Finally, highly significant variation was found among C. elegans wild isolates. Overall, this study reveals that the final position of these neurons is quite robust to stochastic variation, shows some sensitivity to body size and to external perturbations, and varies in the species.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Neuronas/metabolismo , Animales , Tamaño Corporal , Caenorhabditis elegans/metabolismo , Movimiento Celular , Larva/metabolismo , Modelos Teóricos , Neuronas/citología , Procesos Estocásticos , Temperatura
6.
Proc Natl Acad Sci U S A ; 116(49): 24738-24747, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31740606

RESUMEN

Here, we report on the discovery in Caenorhabditis nematodes of multiple vertically transmitted RNAs coding for putative RNA-dependent RNA polymerases. Their sequences share similarity to distinct RNA viruses, including bunyaviruses, narnaviruses, and sobemoviruses. The sequences are present exclusively as RNA and are not found in DNA form. The RNAs persist in progeny after bleach treatment of adult animals, indicating vertical transmission of the RNAs. We tested one of the infected strains for transmission to an uninfected strain and found that mating of infected animals with uninfected animals resulted in infected progeny. By in situ hybridization, we detected several of these RNAs in the cytoplasm of the male and female germline of the nematode host. The Caenorhabditis hosts were found defective in degrading exogenous double-stranded RNAs, which may explain retention of viral-like RNAs. Strikingly, one strain, QG551, harbored three distinct virus-like RNA elements. Specific patterns of small RNAs complementary to the different viral-like RNAs were observed, suggesting that the different RNAs are differentially recognized by the RNA interference (RNAi) machinery. While vertical transmission of viruses in the family Narnaviridae, which are known as capsidless viruses, has been described in fungi, these observations provide evidence that multicellular animal cells harbor similar viruses.


Asunto(s)
Caenorhabditis/virología , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Virus ARN/patogenicidad , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Animales , Caenorhabditis/genética , Femenino , Masculino , Estabilidad del ARN , Virus ARN/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/aislamiento & purificación , ARN Polimerasa Dependiente del ARN/aislamiento & purificación , Proteínas Virales/aislamiento & purificación , Replicación Viral/genética
7.
J Nematol ; 54(1): 20220059, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36879950

RESUMEN

Nematodes of the genus Auanema are interesting models for studying sex determination mechanisms because their populations consist of three sexual morphs (males, females, and hermaphrodites) and produce skewed sex ratios. Here, we introduce a new undescribed species of this genus, Auanema melissensis n. sp., together with its draft nuclear genome. This species is also trioecious and does not cross with the other described species A. rhodensis or A. freiburgensis. Similar to A. freiburgensis, A. melissensis' maternal environment influences the hermaphrodite versus female sex determination of the offspring. The genome of A. melissensis is ~60 Mb, containing 11,040 protein-coding genes and 8.07% of repeat sequences. Using the estimated ancestral chromosomal gene content (Nigon elements), it was possible to identify putative X chromosome scaffolds.

8.
Nat Rev Genet ; 16(8): 483-96, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26184598

RESUMEN

Robustness is characterized by the invariant expression of a phenotype in the face of a genetic and/or environmental perturbation. Although phenotypic variance is a central measure in the mapping of the genotype and environment to the phenotype in quantitative evolutionary genetics, robustness is also a key feature in systems biology, resulting from nonlinearities in quantitative relationships between upstream and downstream components. In this Review, we provide a synthesis of these two lines of investigation, converging on understanding how variation propagates across biological systems. We critically assess the recent proliferation of studies identifying robustness-conferring genes in the context of the nonlinearity in biological systems.


Asunto(s)
Evolución Biológica , Ambiente , Variación Genética , Modelos Biológicos , Fenotipo , Biología de Sistemas/métodos
9.
BMC Evol Biol ; 20(1): 105, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811433

RESUMEN

BACKGROUND: Pseudogamy is a reproductive system in which females rely on the sperm of males to activate their oocytes, generally parasitizing males of other species, but do not use the sperm DNA. The nematode Mesorhabditis belari uses a specific form of pseudogamy, where females produce their own males as a source of sperm. Males develop from rare eggs with true fertilization, while females arise by gynogenesis. Males thus do not contribute their genome to the female offspring. Here, we explored the diversity of reproductive mode within the Mesorhabditis genus and addressed species barriers in pseudogamous species. RESULTS: To this end, we established a collection of over 60 Mesorhabditis strains from soil and rotting vegetal matter. We found that males from pseudogamous species displayed a reduced size of their body, male tail and sperm cells compared to males of sexual Mesorhabditis species, as expected for males that face little competition. Using rDNA sequences and crosses, we could define 11 auto-pseudogamous biological species, with closely related species pairs and a possible single origin of pseudogamy in the Mesorhabditis genus. Most crosses between males and females of different species did not even produce female progeny. This surprising species barrier in pseudogamous egg activation was pre or postcopulatory depending on the species pair. In the latter case, when hybrid embryos were produced, most arrested before the first embryonic cell division. Hybrid incompatibility between auto-pseudogamous species was due to defective interaction between sperm and oocyte as well as defective reconstitution of zygotic centrosomes. CONCLUSIONS: We established a collection of sexual and pseudo-sexual species which offer an ideal framework to explore the origin and consequences of transition to asexuality. Our results demonstrate that speciation occurs in the pseudogamous state. Whereas genomic conflicts are responsible for hybrid incompatibility in sexual species, we here reveal that centrosomes constitute key organelles in the establishment of species barrier.


Asunto(s)
Fertilidad , Fertilización , Hibridación Genética , Rhabditoidea/genética , Rhabditoidea/fisiología , Animales , ADN Ribosómico/genética , Femenino , Masculino , Reproducción , Especificidad de la Especie , Espermatozoides
10.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31434736

RESUMEN

Three RNA viruses related to nodaviruses were previously described to naturally infect the nematode Caenorhabditis elegans and its relative, Caenorhabditis briggsae Here, we report on a collection of more than 50 viral variants from wild-caught Caenorhabditis. We describe the discovery of a new related virus, the Melník virus, infecting C. briggsae, which similarly infects intestinal cells. In France, a frequent pattern of coinfection of C. briggsae by the Santeuil virus and Le Blanc virus was observed at the level of an individual nematode and even a single cell. We do not find evidence of reassortment between the RNA1 and RNA2 molecules of Santeuil and Le Blanc viruses. However, by studying patterns of evolution of each virus, reassortments of RNA1 and RNA2 among variants of each virus were identified. We develop assays to test the relative infectivity and competitive ability of the viral variants and detect an interaction between host genotype and Santeuil virus genotype, such that the result depends on the host strain.IMPORTANCE The roundworm Caenorhabditis elegans is a laboratory model organism in biology. We study natural populations of this small animal and its relative, C. briggsae, and the viruses that infect them. We previously discovered three RNA viruses related to nodaviruses and here describe a fourth one, called the Melník virus. These viruses have a genome composed of two RNA molecules. We find that two viruses may infect the same animal and the same cell. The two RNA molecules may be exchanged between variants of a given viral species. We study the diversity of each viral species and devise an assay of their infectivity and competitive ability. Using this assay, we show that the outcome of the competition also depends on the host.


Asunto(s)
Caenorhabditis/virología , Especiación Genética , Variación Genética , Nodaviridae/clasificación , Nodaviridae/patogenicidad , Infecciones por Virus ARN/virología , Simpatría , Animales , Caenorhabditis/clasificación , Genoma Viral , Interacciones Huésped-Patógeno , Filogenia , Especificidad de la Especie
11.
BMC Biol ; 17(1): 10, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30813925

RESUMEN

BACKGROUND: Nematodes represent important pathogens of humans and farmed animals and cause significant health and economic impacts. The control of nematodes is primarily carried out by applying a limited number of anthelmintic compounds, for which there is now widespread resistance being reported. There is a current unmet need to develop novel control measures including the identification and characterisation of natural pathogens of nematodes. RESULTS: Nematode killing bacilli were isolated from a rotten fruit in association with wild free-living nematodes. These bacteria belong to the Chryseobacterium genus (golden bacteria) and represent a new species named Chryseobacterium nematophagum. These bacilli are oxidase-positive, flexirubin-pigmented, gram-negative rods that exhibit gelatinase activity. Caenorhabditis elegans are attracted to and eat these bacteria. Within 3 h of ingestion, however, the bacilli have degraded the anterior pharyngeal chitinous lining and entered the body cavity, ultimately killing the host. Within 24 h, the internal contents of the worms are digested followed by the final digestion of the remaining cuticle over a 2-3-day period. These bacteria will also infect and kill bacterivorous free-living (L1-L3) stages of all tested parasitic nematodes including the important veterinary Trichostrongylids such as Haemonchus contortus and Ostertagia ostertagi. The bacteria exhibit potent collagen-digesting properties, and genome sequencing has identified novel metalloprotease, collagenase and chitinase enzymes representing potential virulence factors. CONCLUSIONS: Chryseobacterium nematophagum is a newly discovered pathogen of nematodes that rapidly kills environmental stages of a wide range of key nematode parasites. These bacilli exhibit a unique invasion process, entering the body via the anterior pharynx through the specific degradation of extracellular matrices. This bacterial pathogen represents a prospective biological control agent for important nematode parasites.


Asunto(s)
Caenorhabditis elegans/microbiología , Chryseobacterium/fisiología , Infecciones por Flavobacteriaceae/metabolismo , Nematodos/microbiología , Animales , Control Biológico de Vectores , Estudios Prospectivos
12.
PLoS Genet ; 12(9): e1006278, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27588814

RESUMEN

Patterning of C. elegans vulval cell fates relies on inductive signaling. In this induction event, a single cell, the gonadal anchor cell, secretes LIN-3/EGF and induces three out of six competent precursor cells to acquire a vulval fate. We previously showed that this developmental system is robust to a four-fold variation in lin-3/EGF genetic dose. Here using single-molecule FISH, we find that the mean level of expression of lin-3 in the anchor cell is remarkably conserved. No change in lin-3 expression level could be detected among C. elegans wild isolates and only a low level of change-less than 30%-in the Caenorhabditis genus and in Oscheius tipulae. In C. elegans, lin-3 expression in the anchor cell is known to require three transcription factor binding sites, specifically two E-boxes and a nuclear-hormone-receptor (NHR) binding site. Mutation of any of these three elements in C. elegans results in a dramatic decrease in lin-3 expression. Yet only a single E-box is found in the Drosophilae supergroup of Caenorhabditis species, including C. angaria, while the NHR-binding site likely only evolved at the base of the Elegans group. We find that a transgene from C. angaria bearing a single E-box is sufficient for normal expression in C. elegans. Even a short 58 bp cis-regulatory fragment from C. angaria with this single E-box is able to replace the three transcription factor binding sites at the endogenous C. elegans lin-3 locus, resulting in the wild-type expression level. Thus, regulatory evolution occurring in cis within a 58 bp lin-3 fragment, results in a strict requirement for the NHR binding site and a second E-box in C. elegans. This single-cell, single-molecule, quantitative and functional evo-devo study demonstrates that conserved expression levels can hide extensive change in cis-regulatory site requirements and highlights the evolution of new cis-regulatory elements required for cell-specific gene expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Elementos E-Box/genética , Factor de Crecimiento Epidérmico/genética , Vulva/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/genética , Caenorhabditis elegans/crecimiento & desarrollo , Diferenciación Celular/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Unión Proteica/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de la Célula Individual , Vulva/citología
13.
Proc Natl Acad Sci U S A ; 113(27): E3941-9, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27317746

RESUMEN

Most Caenorhabditis elegans studies have used laboratory Escherichia coli as diet and microbial environment. Here we characterize bacteria of C. elegans' natural habitats of rotting fruits and vegetation to provide greater context for its physiological responses. By the use of 16S ribosomal DNA (rDNA)-based sequencing, we identified a large variety of bacteria in C. elegans habitats, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria being most abundant. From laboratory assays using isolated natural bacteria, C. elegans is able to forage on most bacteria (robust growth on ∼80% of >550 isolates), although ∼20% also impaired growth and arrested and/or stressed animals. Bacterial community composition can predict wild C. elegans population states in both rotting apples and reconstructed microbiomes: alpha-Proteobacteria-rich communities promote proliferation, whereas Bacteroidetes or pathogens correlate with nonproliferating dauers. Combinatorial mixtures of detrimental and beneficial bacteria indicate that bacterial influence is not simply nutritional. Together, these studies provide a foundation for interrogating how bacteria naturally influence C. elegans physiology.


Asunto(s)
Caenorhabditis elegans/microbiología , Consorcios Microbianos , Animales , Caenorhabditis elegans/fisiología , Malus/microbiología
14.
PLoS Pathog ; 12(12): e1006093, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27942022

RESUMEN

Microsporidia are fungi-related intracellular pathogens that may infect virtually all animals, but are poorly understood. The nematode Caenorhabditis elegans has recently become a model host for studying microsporidia through the identification of its natural microsporidian pathogen Nematocida parisii. However, it was unclear how widespread and diverse microsporidia infections are in C. elegans or other related nematodes in the wild. Here we describe the isolation and culture of 47 nematodes with microsporidian infections. N. parisii is found to be the most common microsporidia infecting C. elegans in the wild. In addition, we further describe and name six new species in the Nematocida genus. Our sampling and phylogenetic analysis further identify two subclades that are genetically distinct from Nematocida, and we name them Enteropsectra and Pancytospora. Interestingly, unlike Nematocida, these two genera belong to the main clade of microsporidia that includes human pathogens. All of these microsporidia are horizontally transmitted and most specifically infect intestinal cells, except Pancytospora epiphaga that replicates mostly in the epidermis of its Caenorhabditis host. At the subcellular level in the infected host cell, spores of the novel genus Enteropsectra show a characteristic apical distribution and exit via budding off of the plasma membrane, instead of exiting via exocytosis as spores of Nematocida. Host specificity is broad for some microsporidia, narrow for others: indeed, some microsporidia can infect Oscheius tipulae but not its sister species Oscheius sp. 3, and conversely some microsporidia found infecting Oscheius sp. 3 do not infect O. tipulae. We also show that N. ausubeli fails to strongly induce in C. elegans the transcription of genes that are induced by other Nematocida species, suggesting it has evolved mechanisms to prevent induction of this host response. Altogether, these newly isolated species illustrate the diversity and ubiquity of microsporidian infections in nematodes, and provide a rich resource to investigate host-parasite coevolution in tractable nematode hosts.


Asunto(s)
Caenorhabditis elegans/microbiología , Microsporidios/genética , Microsporidios/patogenicidad , Microsporidiosis/genética , Infecciones por Nematodos/microbiología , Animales , Microscopía Electrónica de Transmisión , Nematodos/microbiología , Filogenia , Reacción en Cadena de la Polimerasa
15.
PLoS Pathog ; 12(6): e1005724, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27362540

RESUMEN

Microbial pathogens often establish infection within particular niches of their host for replication. Determining how infection occurs preferentially in specific host tissues is a key aspect of understanding host-microbe interactions. Here, we describe the discovery of a natural microsporidian parasite of the nematode Caenorhabditis elegans that displays a unique tissue tropism compared to previously described parasites of this host. We characterize the life cycle of this new species, Nematocida displodere, including pathogen entry, intracellular replication, and exit. N. displodere can invade multiple host tissues, including the epidermis, muscle, neurons, and intestine of C. elegans. Despite robust invasion of the intestine very little replication occurs there, with the majority of replication occurring in the muscle and epidermis. This feature distinguishes N. displodere from two closely related microsporidian pathogens, N. parisii and N. sp. 1, which exclusively invade and replicate in the intestine. Comparison of the N. displodere genome with N. parisii and N. sp. 1 reveals that N. displodere is the earliest diverging species of the Nematocida genus. Over 10% of the proteins encoded by the N. displodere genome belong to a single species-specific family of RING-domain containing proteins of unknown function that may be mediating interactions with the host. Altogether, this system provides a powerful whole-animal model to investigate factors responsible for pathogen growth in different tissue niches.


Asunto(s)
Caenorhabditis elegans/parasitología , Microsporidios/genética , Microsporidios/patogenicidad , Microsporidiosis/parasitología , Animales , Proteínas Fúngicas/análisis , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Hibridación Fluorescente in Situ , Microscopía Electrónica de Transmisión
16.
Dev Biol ; 416(1): 123-135, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27288708

RESUMEN

How cells coordinate their spatial positioning through intercellular signaling events is poorly understood. Here we address this topic using Caenorhabditis elegans vulval patterning during which hypodermal vulval precursor cells (VPCs) adopt distinct cell fates determined by their relative positions to the gonadal anchor cell (AC). LIN-3/EGF signaling by the AC induces the central VPC, P6.p, to adopt a 1° vulval fate. Exact alignment of AC and VPCs is thus critical for correct fate patterning, yet, as we show here, the initial AC-VPC positioning is both highly variable and asymmetric among individuals, with AC and P6.p only becoming aligned at the early L3 stage. Cell ablations and mutant analysis indicate that VPCs, most prominently 1° cells, move towards the AC. We identify AC-released LIN-3/EGF as a major attractive signal, which therefore plays a dual role in vulval patterning (cell alignment and fate induction). Additionally, compromising Wnt pathway components also induces AC-VPC alignment errors, with loss of posterior Wnt signaling increasing stochastic vulval centering on P5.p. Our results illustrate how intercellular signaling reduces initial spatial variability in cell positioning to generate reproducible interactions across tissues.


Asunto(s)
Inducción Embrionaria , Transducción de Señal , Células Madre , Vulva/embriología , Animales , Tipificación del Cuerpo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Linaje de la Célula , Movimiento Celular , Femenino , Vulva/citología , Proteínas Wnt/metabolismo
17.
BMC Biol ; 14: 38, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27160191

RESUMEN

BACKGROUND: Host-microbe associations underlie many key processes of host development, immunity, and life history. Yet, none of the current research on the central model species Caenorhabditis elegans considers the worm's natural microbiome. Instead, almost all laboratories exclusively use the canonical strain N2 and derived mutants, maintained through routine bleach sterilization in monoxenic cultures with an E. coli strain as food. Here, we characterize for the first time the native microbiome of C. elegans and assess its influence on nematode life history characteristics. RESULTS: Nematodes sampled directly from their native habitats carry a species-rich bacterial community, dominated by Proteobacteria such as Enterobacteriaceae and members of the genera Pseudomonas, Stenotrophomonas, Ochrobactrum, and Sphingomonas. The C. elegans microbiome is distinct from that of the worm's natural environment and the congeneric species C. remanei. Exposure to a derived experimental microbiome revealed that bacterial composition is influenced by host developmental stage and genotype. These experiments also showed that the microbes enhance host fitness under standard and also stressful conditions (e.g., high temperature and either low or high osmolarity). Taking advantage of the nematode's transparency, we further demonstrate that several Proteobacteria are able to enter the C. elegans gut and that an Ochrobactrum isolate even seems to be able to persist in the intestines under stressful conditions. Moreover, three Pseudomonas isolates produce an anti-fungal effect in vitro which we show can contribute to the worm's defense against fungal pathogens in vivo. CONCLUSION: This first systematic analysis of the nematode's native microbiome reveals a species-rich bacterial community to be associated with C. elegans, which is likely of central importance for our understanding of the worm's biology. The information acquired and the microbial isolates now available for experimental work establishes C. elegans as a tractable model for the in-depth dissection of host-microbiome interactions.


Asunto(s)
Caenorhabditis elegans/microbiología , Microbiota , Modelos Biológicos , Animales , Antifúngicos/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Estadios del Ciclo de Vida , Fenotipo , Proteobacteria/aislamiento & purificación , Proteobacteria/metabolismo , Especificidad de la Especie
18.
Trends Genet ; 28(4): 185-95, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22325232

RESUMEN

The Caenorhabditis elegans vulva has served as a paradigm for how conserved developmental pathways, such as EGF-Ras-MAPK, Notch and Wnt signaling, participate in networks driving animal organogenesis. Here, we discuss an emerging direction in the field, which places vulva research in a quantitative and microevolutionary framework. The final vulval cell fate pattern is known to be robust to change, but only recently has the variation of vulval traits been measured under stochastic, environmental or genetic variation. Whereas the resulting cell fate pattern is invariant among rhabditid nematodes, recent studies indicate that the developmental system has accumulated cryptic variation, even among wild C. elegans isolates. Quantitative differences in the signaling network have emerged through experiments and modeling as the driving force behind cryptic variation in Caenorhabditis species. On a wider evolutionary scale, the establishment of new model species has informed about the presence of qualitative variation in vulval signaling pathways.


Asunto(s)
Nematodos/metabolismo , Vulva/metabolismo , Animales , Linaje de la Célula , Evolución Molecular , Femenino , Humanos , Nematodos/citología , Nematodos/genética , Nematodos/crecimiento & desarrollo , Filogenia , Transducción de Señal , Vulva/citología , Vulva/crecimiento & desarrollo
19.
PLoS Biol ; 10(1): e1001230, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22235190

RESUMEN

Robust biological systems are expected to accumulate cryptic genetic variation that does not affect the system output in standard conditions yet may play an evolutionary role once phenotypically expressed under a strong perturbation. Genetic variation that is cryptic relative to a robust trait may accumulate neutrally as it does not change the phenotype, yet it could also evolve under selection if it affects traits related to fitness in addition to its cryptic effect. Cryptic variation affecting the vulval intercellular signaling network was previously uncovered among wild isolates of Caenorhabditis elegans. Using a quantitative genetic approach, we identify a non-synonymous polymorphism of the previously uncharacterized nath-10 gene that affects the vulval phenotype when the system is sensitized with different mutations, but not in wild-type strains. nath-10 is an essential protein acetyltransferase gene and the homolog of human NAT10. The nath-10 polymorphism also presents non-cryptic effects on life history traits. The nath-10 allele carried by the N2 reference strain leads to a subtle increase in the egg laying rate and in the total number of sperm, a trait affecting the trade-off between fertility and minimal generation time in hermaphrodite individuals. We show that this allele appeared during early laboratory culture of N2, which allowed us to test whether it may have evolved under selection in this novel environment. The derived allele indeed strongly outcompetes the ancestral allele in laboratory conditions. In conclusion, we identified the molecular nature of a cryptic genetic variation and characterized its evolutionary history. These results show that cryptic genetic variation does not necessarily accumulate neutrally at the whole-organism level, but may evolve through selection for pleiotropic effects that alter fitness. In addition, cultivation in the laboratory has led to adaptive evolution of the reference strain N2 to the laboratory environment, which may modify other phenotypes of interest.


Asunto(s)
Evolución Biológica , Caenorhabditis elegans/genética , Pleiotropía Genética , Variación Genética , Acetiltransferasas/genética , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Receptores ErbB/genética , Femenino , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Genotipo , Masculino , Datos de Secuencia Molecular , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Especificidad de la Especie , Temperatura , Vulva/citología , Vulva/crecimiento & desarrollo , Vulva/metabolismo
20.
PLoS Biol ; 9(1): e1000586, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21283608

RESUMEN

An ideal model system to study antiviral immunity and host-pathogen co-evolution would combine a genetically tractable small animal with a virus capable of naturally infecting the host organism. The use of C. elegans as a model to define host-viral interactions has been limited by the lack of viruses known to infect nematodes. From wild isolates of C. elegans and C. briggsae with unusual morphological phenotypes in intestinal cells, we identified two novel RNA viruses distantly related to known nodaviruses, one infecting specifically C. elegans (Orsay virus), the other C. briggsae (Santeuil virus). Bleaching of embryos cured infected cultures demonstrating that the viruses are neither stably integrated in the host genome nor transmitted vertically. 0.2 µm filtrates of the infected cultures could infect cured animals. Infected animals continuously maintained viral infection for 6 mo (∼50 generations), demonstrating that natural cycles of horizontal virus transmission were faithfully recapitulated in laboratory culture. In addition to infecting the natural C. elegans isolate, Orsay virus readily infected laboratory C. elegans mutants defective in RNAi and yielded higher levels of viral RNA and infection symptoms as compared to infection of the corresponding wild-type N2 strain. These results demonstrated a clear role for RNAi in the defense against this virus. Furthermore, different wild C. elegans isolates displayed differential susceptibility to infection by Orsay virus, thereby affording genetic approaches to defining antiviral loci. This discovery establishes a bona fide viral infection system to explore the natural ecology of nematodes, host-pathogen co-evolution, the evolution of small RNA responses, and innate antiviral mechanisms.


Asunto(s)
Caenorhabditis/virología , Virus ARN/fisiología , Animales , Caenorhabditis/genética , Caenorhabditis/inmunología , Variación Genética , Interacciones Huésped-Patógeno , Nodaviridae , Filogenia , Interferencia de ARN , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA