Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338689

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer characterized by the infiltration of immature T-cells in the bone marrow. Aberrant NOTCH signaling in T-ALL is mainly triggered by activating mutations of NOTCH1 and overexpression of NOTCH3, and rarely is it linked to NOTCH3-activating mutations. Besides the known critical role of NOTCH, the nature of intrathymic microenvironment-dependent mechanisms able to render immature thymocytes, presumably pre-leukemic cells, capable of escaping thymus retention and infiltrating the bone marrow is still unclear. An important challenge is understanding how leukemic cells shape their tumor microenvironment to increase their ability to infiltrate and survive within. Our previous data indicated that hyperactive NOTCH3 affects the CXCL12/CXCR4 system and may interfere with T-cell/stroma interactions within the thymus. This study aims to identify the biological effects of the reciprocal interactions between human leukemic cell lines and thymic epithelial cell (TEC)-derived soluble factors in modulating NOTCH signaling and survival programs of T-ALL cells and TECs. The overarching hypothesis is that this crosstalk can influence the progressive stages of T-cell development driving T-cell leukemia. Thus, we investigated the effect of extracellular space conditioned by T-ALL cell lines (Jurkat, TALL1, and Loucy) and TECs and studied their reciprocal regulation of cell cycle and survival. In support, we also detected metabolic changes as potential drivers of leukemic cell survival. Our studies could shed light on T-cell/stroma crosstalk to human leukemic cells and propose our culture system to test pharmacological treatment for T-ALL.


Asunto(s)
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Timo/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , Leucemia de Células T/metabolismo , Apoptosis , Proliferación Celular , Microambiente Tumoral
2.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055013

RESUMEN

Acute lymphoblastic leukaemia (ALL) is an aggressive haematological tumour driven by the malignant transformation and expansion of B-cell (B-ALL) or T-cell (T-ALL) progenitors. The evolution of T-ALL pathogenesis encompasses different master developmental pathways, including the main role played by Notch in cell fate choices during tissue differentiation. Recently, a growing body of evidence has highlighted epigenetic changes, particularly the altered expression of microRNAs (miRNAs), as a critical molecular mechanism to sustain T-ALL. The immune response is emerging as key factor in the complex multistep process of cancer but the role of miRNAs in anti-leukaemia response remains elusive. In this review we analyse the available literature on miRNAs as tuners of the immune response in T-ALL, focusing on their role in Natural Killer, T, T-regulatory and Myeloid-derived suppressor cells. A better understanding of this molecular crosstalk may provide the basis for the development of potential immunotherapeutic strategies in the leukemia field.


Asunto(s)
Biomarcadores de Tumor , Regulación Leucémica de la Expresión Génica , Inmunomodulación/genética , MicroARNs/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiología , Animales , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Interferencia de ARN , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Transcripción Genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
3.
Mediators Inflamm ; 2015: 607957, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26491233

RESUMEN

Overexpression of efflux transporters, in human cells, is a mechanism of resistance to drug and also to chemotherapy. We found that multidrug resistance protein-4 (MRP4) overexpression has a role in reducing aspirin action in patients after bypass surgery and, very recently, we found that aspirin enhances platelet MRP4 levels through peroxisome proliferator activated receptor-α (PPARα). In the present paper, we verified whether exposure of human embryonic kidney-293 cells (Hek-293) to aspirin modifies MRP4 gene expression and its correlation with drug elimination and cell toxicity. We first investigated the effect of high-dose aspirin in Hek-293 and we showed that aspirin is able to increase cell toxicity dose-dependently. Furthermore, aspirin effects, induced at low dose, already enhance MRP4 gene expression. Based on these findings, we compared cell viability in Hek-293, after high-dose aspirin treatment, in MRP4 overexpressing cells, either after aspirin pretreatment or in MRP4 transfected cells; in both cases, a decrease of selective aspirin cell growth inhibition was observed, in comparison with the control cultures. Altogether, these data suggest that exposing cells to low nontoxic aspirin dosages can induce gene expression alterations that may lead to the efflux transporter protein overexpression, thus increasing cellular detoxification of aspirin.


Asunto(s)
Aspirina/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transporte Biológico/efectos de los fármacos , Plaquetas/efectos de los fármacos , Muerte Celular , Línea Celular , Separación Celular , Supervivencia Celular , Cromatografía Líquida de Alta Presión , Resistencia a Medicamentos , Citometría de Flujo , Regulación de la Expresión Génica , Células HEK293 , Humanos , PPAR alfa/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Oncogene ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907003

RESUMEN

Malignant transformation of T-cell progenitors causes T-cell acute lymphoblastic leukemia (T-ALL), an aggressive childhood lymphoproliferative disorder. Activating mutations of Notch, Notch1 and Notch3, have been detected in T-ALL patients. In this study, we aimed to deeply characterize hyperactive Notch3-related pathways involved in T-cell dynamics within the thymus and bone marrow to propose these processes as an important step in facilitating the progression of T-ALL. We previously generated a transgenic T-ALL mouse model (N3-ICtg) demonstrating that aberrant Notch3 signaling affects early thymocyte maturation programs and leads to bone marrow infiltration by CD4+CD8+ (DP) T cells that are notably, Notch3highCXCR4high. Newly, our in vivo results suggest that an anomalous immature thymocyte subpopulation, such as CD4-CD8- (DN) over-expressing CD3ɛ, but with low CXCR4 expression, dominates N3-ICtg thymus-resident DN subset in T-ALL progression. MicroRNAs might be of significance in T-ALL pathobiology, however, whether required for leukemia maintenance is not fully understood. The selection of specific DN subsets demonstrates the inverse correlation between CXCR4 expression and a panel of Notch3-deregulated miRNAs. Interestingly, we found that within DN thymocyte subset hyperactive Notch3 inhibits CXCR4 expression through the cooperative effects of miR-139-5p and miR-150-5p, thus impinging on thymocyte differentiation with accumulation of DNCD3ɛ+CXCR4- cells. These data point out that deregulation of Notch3 in T-ALL, besides its role in sustaining dissemination of abnormal DP T cells, as we previously demonstrated, could play a role in selecting specific DN immature T cells within the thymus, thus impeding T cell development, to facilitate T-ALL progression inside the bone marrow.

5.
J Immunol ; 186(11): 6199-206, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21508258

RESUMEN

Notch3 overexpression has been previously shown to positively regulate the generation and function of naturally occurring regulatory T cells and the expression of Foxp3, in cooperation with the pTα/pre-TCR pathway. In this study, we show that Notch3 triggers the trans activation of Foxp3 promoter depending on the T cell developmental stage. Moreover, we discovered a novel CSL/NF-κB overlapping binding site within the Foxp3 promoter, and we demonstrate that the activation of NF-κB, mainly represented by p65-dependent canonical pathway, plays a positive role in Notch3-dependent regulation of Foxp3 transcription. Accordingly, the deletion of protein kinase C, which mediates canonical NF-κB activation, markedly reduces regulatory T cell number and per cell Foxp3 expression in transgenic mice with a constitutive activation of Notch3 signaling. Collectively, our data indicate that the cooperation among Notch3, protein kinase C, and p65/NF-κB subunit modulates Foxp3 expression, adding new insights in the understanding of the molecular mechanisms involved in regulatory T cell homeostasis and function.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , FN-kappa B/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Línea Celular , Células Cultivadas , Citometría de Flujo , Factores de Transcripción Forkhead/genética , Immunoblotting , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Quinasa C-theta , Receptor Notch3 , Receptores Notch/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T Reguladores/metabolismo , Timo/citología , Timo/metabolismo , Factores de Tiempo , Factor de Transcripción ReIA/metabolismo , Transcripción Genética , Activación Transcripcional
6.
Cell Death Dis ; 14(7): 441, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460459

RESUMEN

BH3 mimetics, targeting the Bcl-2 family anti-apoptotic proteins, represent a promising therapeutic opportunity in cancers. ABT-199, the first specific Bcl-2 inhibitor, was approved by FDA for the treatment of several hematological malignancies. We have recently discovered IS21, a novel pan BH3 mimetic with preclinical antitumor activity in several tumor types. Here, we evaluated the efficacy of IS21 and other BH3 mimetics, both as single agents and combined with the currently used antineoplastic agents in T-cell acute lymphoblastic leukemia, ovarian cancer, and melanoma. IS21 was found to be active in T-cell acute lymphoblastic leukemia, melanoma, lung, pancreatic, and ovarian cancer cell lines. Bcl-xL and Mcl-1 protein levels predicted IS21 sensitivity in melanoma and ovarian cancer, respectively. Exploring IS21 mechanism of action, we found that IS21 activity depends on the presence of BAX and BAK proteins: complexes between Bcl-2 and Bcl-xL proteins and their main binding partners were reduced after IS21 treatment. In combination experiments, BH3 mimetics sensitized leukemia cells to chemotherapy, ovarian cancer cells and melanoma models to PARP and MAPK inhibitors, respectively. We showed that this enhancing effect was related to the potentiation of the apoptotic pathway, both in hematologic and solid tumors. In conclusion, our data suggest the use of inhibitors of anti-apoptotic proteins as a therapeutic strategy to enhance the efficacy of anticancer treatment.


Asunto(s)
Antineoplásicos , Melanoma , Neoplasias Ováricas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Femenino , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteína bcl-X/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Línea Celular Tumoral
7.
Front Immunol ; 13: 920306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734178

RESUMEN

Optimal recovery of immune competence after periods of hematopoietic insults or stress is crucial to re-establish patient response to vaccines, pathogens and tumor antigens. This is particularly relevant for patients receiving high doses of chemotherapy or radiotherapy, who experience prolonged periods of lymphopenia, which can be associated with an increased risk of infections, malignant relapse, and adverse clinical outcome. While the thymus represents the primary organ responsible for the generation of a diverse pool of T cells, its function is profoundly impaired by a range of acute insults (including those caused by cytoreductive chemo/radiation therapy, infections and graft-versus-host disease) and by the chronic physiological deterioration associated with aging. Impaired thymic function increases the risk of infections and tumor antigen escape due to a restriction in T-cell receptor diversity and suboptimal immune response. Therapeutic approaches that can promote the renewal of the thymus have the potential to restore immune competence in patients. Previous work has documented the importance of the crosstalk between thymocytes and thymic epithelial cells in establishing correct architecture and function of thymic epithelium. This crosstalk is relevant not only during thymus organogenesis, but also to promote the recovery of its function after injuries. In this review, we will analyze the signals involved in the crosstalk between TECs and hematopoietic cells. We will focus in particular on how signals from T-cells can regulate TEC function and discuss the relevance of these pathways in restoring thymic function and T-cell immunity in experimental models, as well as in the clinical setting.


Asunto(s)
Enfermedad Injerto contra Huésped , Células Epiteliales , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Regeneración , Transducción de Señal , Timocitos/metabolismo , Timo
8.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680255

RESUMEN

Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.

9.
Front Cell Dev Biol ; 9: 691644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422814

RESUMEN

Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by encoding oncogenic proteins, and/or by modifying the microenvironment, as well as by conveying genomic instability to accelerate cancer development. In addition, viral immune evasion mechanisms may compromise developmental pathways to accelerate tumor growth. Viruses achieve this by influencing both coding and non-coding gene regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate developmental pathways is crucial to understanding viral tumorigenesis. Many currently available antiviral therapies target viral lytic cycle replication but with low efficacy and severe side effects. A greater understanding of the cross-signaling between oncogenic viruses and developmental pathways will improve the efficacy of next-generation inhibitors and pave the way to more targeted antiviral therapies.

10.
Front Cell Dev Biol ; 8: 613557, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33425921

RESUMEN

Major signaling pathways, such as Notch, Hedgehog (Hh), Wnt/ß-catenin and Hippo, are targeted by a plethora of physiological and pathological stimuli, ultimately resulting in the modulation of genes that act coordinately to establish specific biological processes. Many biological programs are strictly controlled by the assembly of multiprotein complexes into the nucleus, where a regulated recruitment of specific transcription factors and coactivators on gene promoter region leads to different transcriptional outcomes. MAML1 results to be a versatile coactivator, able to set up synergistic interlinking with pivotal signaling cascades and able to coordinate the network of cross-talking pathways. Accordingly, despite its original identification as a component of the Notch signaling pathway, several recent reports suggest a more articulated role for MAML1 protein, showing that it is able to sustain/empower Wnt/ß-catenin, Hh and Hippo pathways, in a Notch-independent manner. For this reason, MAML1 may be associated to a molecular "switch", with the function to control the activation of major signaling pathways, triggering in this way critical biological processes during embryonic and post-natal life. In this review, we summarize the current knowledge about the pleiotropic role played by MAML proteins, in particular MAML1, and we recapitulate how it takes part actively in physiological and pathological signaling networks. On this point, we also discuss the contribution of MAML proteins to malignant transformation. Accordingly, genetic alterations or impaired expression of MAML proteins may lead to a deregulated crosstalk among the pathways, culminating in a series of pathological disorders, including cancer development. Given their central role, a better knowledge of the molecular mechanisms that regulate the interplay of MAML proteins with several signaling pathways involved in tumorigenesis may open up novel opportunities for an attractive molecular targeted anticancer therapy.

11.
Sci Rep ; 10(1): 14839, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908186

RESUMEN

Macrophage activation by Toll receptors is an essential event in the development of the response against pathogens. NOTCH signaling pathway is involved in the control of macrophage activation and the inflammatory processes. In this work, we have characterized NOTCH signaling in macrophages activated by Toll-like receptor (TLR) triggering and determined that DLL1 and DLL4 are the main ligands responsible for NOTCH signaling. We have identified ADAM10 as the main protease implicated in NOTCH processing and activation. We have also observed that furin, which processes NOTCH receptors, is induced by TLR signaling in a NOTCH-dependent manner. NOTCH3 is the only NOTCH receptor expressed in resting macrophages. Its expression increased rapidly in the first hours after TLR4 activation, followed by a gradual decrease, which was coincident with an elevation of the expression of the other NOTCH receptors. All NOTCH1, 2 and 3 contribute to the increased NOTCH signaling detected in activated macrophages. We also observed a crosstalk between NOTCH3 and NOTCH1 during macrophage activation. Finally, our results highlight the relevance of NOTCH3 in the activation of NF-κB, increasing p65 phosphorylation by p38 MAP kinase. Our data identify, for the first time, NOTCH3 as a relevant player in the control of inflammation.


Asunto(s)
Inflamación/inmunología , Macrófagos/inmunología , Receptor Notch3/fisiología , Animales , Regulación de la Expresión Génica , Humanos , Activación de Macrófagos , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , FN-kappa B/inmunología , Células RAW 264.7 , Transducción de Señal , Receptores Toll-Like/inmunología
12.
Biochim Biophys Acta ; 1782(9): 489-97, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18625307

RESUMEN

Notch signaling pathway regulates a wide variety of cellular processes during development and it also plays a crucial role in human diseases. This important link is firmly established in cancer, since a rare T-ALL-associated genetic lesion has been initially reported to result in deletion of Notch1 ectodomain and constitutive activation of its intracellular region. Interestingly, the cellular response to Notch signaling can be extremely variable depending on the cell type and activation context. Notch signaling triggers signals implicated in promoting carcinogenesis and autoimmune diseases, whereas it can also sustain responses that are critical to suppress carcinogenesis and to negatively regulate immune response. However, Notch signaling induces all these effects via an apparently simple signal transduction pathway, diversified into a complex network along evolution from Drosophila to mammals. Indeed, an explanation of this paradox comes from a number of evidences accumulated during the last few years, which dissected the intrinsic canonical and non-canonical components of the Notch pathway as well as several modulatory extrinsic signaling events. The identification of these signals has shed light onto the mechanisms whereby Notch and other pathways collaborate to induce a particular cellular phenotype. In this article, we review the role of Notch signaling in cells as diverse as T lymphocytes and epithelial cells of the epidermis, with the main focus on understanding the mechanisms of Notch versatility.


Asunto(s)
Evolución Biológica , Enfermedad , Receptores Notch/metabolismo , Transducción de Señal , Animales , Autoinmunidad , Humanos , Neoplasias/metabolismo
13.
J Immunol Res ; 2019: 5601396, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31346528

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common cancer among children. Recent advances in chemotherapy have made ALL a curable hematological malignancy. In children, there is 25% chance of disease relapse, typically in the central nervous system. While in adults, there is a higher chance of relapse. ALL may affect B-cell or T-cell lineages. Different genetic alterations characterize the two ALL forms. Deregulated Notch, either Notch1 or Notch3, and CXCR4 receptor signaling are involved in ALL disease development and progression. By analyzing their relevant roles in the pathogenesis of the two ALL forms, new molecular mechanisms able to modulate cancer cell invasion may be visualized. Notably, the partnership between Notch and CXCR4 may have considerable implications in understanding the complexity of T- and B-ALL. These two receptor pathways intersect other critical signals in the proliferative, differentiation, and metabolic programs of lymphocyte transformation. Also, the identification of the crosstalks in leukemia-stroma interaction within the tumor microenvironment may unveil new targetable mechanisms in disease relapse. Further studies are required to identify new challenges and opportunities to develop more selective and safer therapeutic strategies in ALL progression, possibly contributing to improve conventional hematological cancer therapy.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Receptor Notch3/genética , Receptores CXCR4/metabolismo , Adulto , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Quimiocina CXCL12/metabolismo , Niño , Progresión de la Enfermedad , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptor Notch1/metabolismo , Receptor Notch3/metabolismo , Transducción de Señal/genética , Microambiente Tumoral/inmunología
14.
Front Oncol ; 9: 198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001470

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer caused by the deregulation of key T-cell developmental pathways, including Notch signaling. Aberrant Notch signaling in T-ALL occurs by NOTCH1 gain-of-function mutations and by NOTCH3 overexpression. Although NOTCH3 is assumed as a Notch1 target, machinery driving its transcription in T-ALL is undefined in leukemia subsets lacking Notch1 activation. Here, we found that the binding of the intracellular Notch3 domain, as well as of the activated Notch1 fragment, to the NOTCH3 gene locus led to the recruitment of the H3K27 modifiers JMJD3 and p300, and it was required to preserve transcriptional permissive/active H3K27 marks and to sustain NOTCH3 gene expression levels. Consistently, pharmacological inhibition of JMJD3 by GSKJ4 treatment or of p300 by A-485 decreased the levels of expression of NOTCH3, NOTCH1 and of the Notch target genes DELTEX1 and c-Myc and abrogated cell viability in both Notch1- and Notch3-dependent T-cell contexts. Notably, re-introduction of exogenous Notch1, Notch3 as well as c-Myc partially rescued cells from anti-growth effects induced by either treatment. Overall our findings indicate JMJD3 and p300 as general Notch1 and Notch3 signaling co-activators in T-ALL and suggest further investigation on the potential therapeutic anti-leukemic efficacy of their enzymatic inhibition in Notch/c-Myc axis-related cancers and diseases.

15.
Cancer Res ; 79(21): 5575-5586, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31506332

RESUMEN

Colorectal cancer is characterized by well-known genetic defects and approximately 50% of cases harbor oncogenic Ras mutations. Increased expression of Notch ligand Jagged1 occurs in several human malignancies, including colorectal cancer, and correlates with cancer progression, poor prognosis, and recurrence. Herein, we demonstrated that Jagged1 was constitutively processed in colorectal cancer tumors with mutant Kras, which ultimately triggered intrinsic reverse signaling via its nuclear-targeted intracellular domain Jag1-ICD. This process occurred when Kras/Erk/ADAM17 signaling was switched on, demonstrating that Jagged1 is a novel target of the Kras signaling pathway. Notably, Jag1-ICD promoted tumor growth and epithelial-mesenchymal transition, enhancing colorectal cancer progression and chemoresistance both in vitro and in vivo. These data highlight a novel role for Jagged1 in colorectal cancer tumor biology that may go beyond its effect on canonical Notch activation and suggest that Jag1-ICD may behave as an oncogenic driver that is able to sustain tumor pathogenesis and to confer chemoresistance through a noncanonical mechanism. SIGNIFICANCE: These findings present a novel role of the transcriptionally active Jag1-ICD fragment to confer and mediate some of the activity of oncogenic KRAS.


Asunto(s)
Proteína ADAM17/genética , Neoplasias Colorrectales/genética , Proteína Jagged-1/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/genética , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Células HCT116 , Células HT29 , Humanos , Ratones , Ratones Desnudos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología
16.
Expert Opin Ther Targets ; 22(4): 331-342, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29527929

RESUMEN

INTRODUCTION: Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Although the therapy of ALL has significantly improved, the heterogeneous genetic landscape of the disease often causes relapse, which is difficult to treat. Achieving a positive outcome for patients with relapsed or refractory ALL remains a challenging issue. The high prevalence of NOTCH-activating mutations in T-cell acute lymphoblastic leukemia (T-ALL) and the central role of NOTCH signaling in regulating cell survival and growth of ALL provide a rationale for the development of Notch signaling-targeted strategies in this disease. Therapeutic alternatives with effective anti-leukemic potential and low toxicity are needed. Areas covered: This review provides an overview of the currently available drugs directly or indirectly targeting Notch signaling in ALL. Besides considering the known Notch targeting approaches, such as γ-secretase inhibitors (GSIs) and Notch inhibiting antibodies (mAbs), currently in clinical trials, we focus on the recent insights into the molecular mechanisms underlying the Notch signaling regulation in ALL. Expert opinion: Novel drugs targeting specific steps of Notch signaling or intersecting pathways could improve the efficiency of the conventional hematological cancers therapies. Further studies are required to translate the new findings into future clinical applications.


Asunto(s)
Antineoplásicos/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Receptores Notch/metabolismo , Animales , Niño , Diseño de Fármacos , Humanos , Terapia Molecular Dirigida , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Transducción de Señal/efectos de los fármacos
17.
Front Immunol ; 9: 2165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364244

RESUMEN

The Notch signaling pathway plays multiple roles in driving T-cell fate decisions, proliferation, and aberrant growth. NF-κB is a cell-context key player interconnected with Notch signaling either in physiological or in pathological conditions. This review focuses on how the multilayered crosstalk between different Notches and NF-κB subunits may converge on Foxp3 gene regulation and orchestrate CD4+ regulatory T (Treg) cell function, particularly in a tumor microenvironment. Notably, Treg cells may play a pivotal role in the inhibition of antitumor immune responses, possibly promoting tumor growth. A future challenge is represented by further dissection of both Notch and NF-κB pathways and consequences of their intersection in tumor-associated Treg biology. This may shed light on the molecular mechanisms regulating Treg cell expansion and migration to peripheral lymphoid organs thought to facilitate tumor development and still to be explored. In so doing, new opportunities for combined and/or more selective therapeutic approaches to improve anticancer immunity may be found.


Asunto(s)
FN-kappa B/inmunología , Neoplasias/inmunología , Receptores Notch/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología , Animales , Movimiento Celular/inmunología , Proliferación Celular , Humanos , Neoplasias/patología , Linfocitos T Reguladores/patología
18.
Oncogene ; 37(49): 6285-6298, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30038265

RESUMEN

Notch hyperactivation dominates T-cell acute lymphoblastic leukemia development, but the mechanisms underlying "pre-leukemic" cell dissemination are still unclear. Here we describe how deregulated Notch3 signaling enhances CXCR4 cell-surface expression and migratory ability of CD4+CD8+ thymocytes, possibly contributing to "pre-leukemic" cell propagation, early in disease progression. In transgenic mice overexpressing the constitutively active Notch3 intracellular domain, we detect the progressive increase in circulating blood and bone marrow of CD4+CD8+ cells, characterized by high and combined surface expression of Notch3 and CXCR4. We report for the first time that transplantation of such CD4+CD8+ cells reveals their competence in infiltrating spleen and bone marrow of immunocompromised recipient mice. We also show that CXCR4 surface expression is central to the migratory ability of CD4+CD8+ cells and such an expression is regulated by Notch3 through ß-arrestin in human leukemia cells. De novo, we propose that hyperactive Notch3 signaling by boosting CXCR4-dependent migration promotes anomalous egression of CD4+CD8+ cells from the thymus in early leukemia stages. In fact, in vivo CXCR4 antagonism prevents bone marrow colonization by such CD4+CD8+ cells in young Notch3 transgenic mice. Therefore, our data suggest that combined therapies precociously counteracting intrathymic Notch3/CXCR4 crosstalk may prevent dissemination of "pre-leukemic" CD4+CD8+ cells, by a "thymus-autonomous" mechanism.


Asunto(s)
Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptor Notch3/metabolismo , Receptores CXCR4/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Movimiento Celular/fisiología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Humanos , Ratones , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo
19.
J Leukoc Biol ; 102(2): 361-368, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28292944

RESUMEN

The Notch pathway represents a conserved signal transduction machinery that is straightforward and based on a few elements (ligands, receptors, transducers). However, the existence of multiple control levels of the Notch signaling final outcome makes it strictly context dependent and dose dependent. The function of Notch as a regulator of cell development and differentiation, as well as the aberrant consequences of its modulation, either positive or negative, is well established. In this review, we will discuss our current knowledge about Notch-dependent regulation of generation and function of 2 subsets of the immunoregulatory system, namely regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Then, we will focus on an unforeseen mechanism that may unveil an additional way of Notch to govern the surrounding environment in cancer.


Asunto(s)
Células Supresoras de Origen Mieloide/inmunología , Receptores Notch/inmunología , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular/inmunología , Humanos , Células Supresoras de Origen Mieloide/citología , Linfocitos T Reguladores/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA