Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Regul Toxicol Pharmacol ; 115: 104697, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32590049

RESUMEN

Romosozumab (EVENITY™ [romosozumab-aqqg in the US]) is a humanized monoclonal antibody that inhibits sclerostin and has been approved in several countries for the treatment of osteoporosis in postmenopausal women at high risk of fracture. Sclerostin is expressed in bone and aortic vascular smooth muscle (AVSM). Its function in AVSM is unclear but it has been proposed to inhibit vascular calcification, atheroprogression, and inflammation. An increased incidence of positively adjudicated serious cardiovascular adverse events driven by an increase in myocardial infarction and stroke was observed in romosozumab-treated subjects in a clinical trial comparing alendronate with romosozumab (ARCH; NCT01631214) but not in a placebo-controlled trial (FRAME; NCT01575834). To investigate the effects of sclerostin inhibition with sclerostin antibody on the cardiovascular system, a comprehensive nonclinical toxicology package with additional cardiovascular studies was conducted. Although pharmacodynamic effects were observed in the bone, there were no functional, morphological, or transcriptional effects on the cardiovascular system in animal models in the presence or absence of atherosclerosis. These nonclinical studies did not identify evidence that proves the association between sclerostin inhibition and adverse cardiovascular function, increased cardiovascular calcification, and atheroprogression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Anticuerpos Monoclonales/farmacología , Conservadores de la Densidad Ósea/farmacología , Sistema Cardiovascular/efectos de los fármacos , Animales , Anticuerpos Monoclonales/uso terapéutico , Conservadores de la Densidad Ósea/uso terapéutico , Evaluación Preclínica de Medicamentos , Femenino , Fracturas Óseas/prevención & control , Humanos , Macaca fascicularis , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Osteoporosis/tratamiento farmacológico , Ratas Sprague-Dawley , Riesgo
2.
Regul Toxicol Pharmacol ; 81: 212-222, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27569204

RESUMEN

Romosozumab is a humanized immunoglobulin G2 monoclonal antibody that binds and blocks the action of sclerostin, a protein secreted by the osteocyte and an extracellular inhibitor of canonical Wnt signaling. Blockade of sclerostin binding to low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6) allows Wnt ligands to activate canonical Wnt signaling in bone, increasing bone formation and decreasing bone resorption, making sclerostin an attractive target for osteoporosis therapy. Because romosozumab is a bone-forming agent and an activator of canonical Wnt signaling, questions have arisen regarding a potential carcinogenic risk. Weight-of-evidence factors used in the assessment of human carcinogenic risk of romosozumab included features of canonical Wnt signaling, expression pattern of sclerostin, phenotype of loss-of-function mutations in humans and mice, mode and mechanism of action of romosozumab, and findings from romosozumab chronic toxicity studies in rats and monkeys. Although the weight-of-evidence factors supported that romosozumab would pose a low carcinogenic risk to humans, the carcinogenic potential of romosozumab was assessed in a rat lifetime study. There were no romosozumab-related effects on tumor incidence in rats. The findings of the lifetime study and the weight-of-evidence factors collectively indicate that romosozumab administration would not pose a carcinogenic risk to humans.


Asunto(s)
Anticuerpos Monoclonales/toxicidad , Neoplasias/inducido químicamente , Animales , Anticuerpos Monoclonales/administración & dosificación , Pruebas de Carcinogenicidad , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratas , Medición de Riesgo
3.
Bone ; 179: 116985, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38052372

RESUMEN

Sclerostin is an extracellular inhibitor of canonical Wnt signaling that inhibits bone formation and stimulates bone resorption. Anti-sclerostin antibodies (Scl-Ab) have been developed as bone-building agents. DKK1, another extracellular inhibitor of the pathway, is upregulated in osteocytes in response to sclerostin inhibition. To further enhance bone-forming effects, a bispecific antibody inhibiting both sclerostin and DKK1 was created (AMG 147). In nonclinical safety studies, AMG 147 resulted in novel skull findings. In the rat, there was increased thickness of skull bones of neural crest origin due to increased subperiosteal compact lamellar and intramembranous woven bone. Externally, subperiosteal fibroblastic/osteoblastic stromal cell proliferation with woven bone and hemorrhage was also observed. Scl-Ab alone resulted in increased skull thickness in the rat, like AMG 147, but without the stromal cell proliferation/woven bone formation. In contrast to embryonic flat bone development, intramembranous bone formed similar to plexiform bone. In the monkey, AMG 147 resulted in macroscopic skull thickening due to a diffuse increase in appositional lamellar bone and increased intramembranous bone on both periosteal surfaces of all skull bones. These data demonstrate that dual inhibition of sclerostin and DDK1 results in unique effects on the skull not observed with sclerostin inhibition alone.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Anticuerpos , Huesos , Péptidos y Proteínas de Señalización Intercelular , Animales , Ratas , Anticuerpos/farmacología , Osteogénesis , Primates , Cráneo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Huesos/efectos de los fármacos , Huesos/fisiología
4.
J Orthop Res ; 40(10): 2281-2293, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35128722

RESUMEN

Vocacapsaicin is a novel prodrug of trans-capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) being developed as a nonopioid, long-lasting, site-specific treatment for postsurgical pain management. The objective of these studies was to examine the safety and tolerability of vocacapsaicin in an osteotomy model in two animal species and to evaluate bone healing parameters. Rats undergoing unilateral femoral osteotomy received a single perioperative administration (by instillation) of vocacapsaicin (vehicle, 0.15, 0.3, and 0.6 mg/kg). Rabbits undergoing unilateral ulnar osteotomy received a single perioperative administration (by infiltration and instillation) of vocacapsaicin (vehicle, 0.256 and 0.52 mg) alone or in combination with 0.5% ropivacaine. Clinical signs, body weights, food consumption, radiography, histopathologic examinations, ex vivo bone mineral density measurements (rats only), and biomechanical testing were evaluated at 4 and 8 weeks in rats and at 2 and 10 weeks in rabbits. Plasma samples were also collected in rabbits. There were no vocacapsaicin-related effects on mortality, clinical observations, body weight, or food consumption in either species. Systemic exposure to vocacapsaicin and its metabolites, including capsaicin, was transient. In rats, vocacapsaicin was devoid of deleterious effects on bone healing parameters, and there was a trend for enhanced bone healing in rats treated with the mid-dose. In rabbits, vocacapsaicin administered alone or in combination with ropivacaine did not adversely affect bone healing parameters. In conclusion, a single perioperative administration of vocacapsaicin in unilateral osteotomy models was well tolerated, locally and systemically, supporting its continued development as a novel, nonopioid treatment for postsurgical pain management.


Asunto(s)
Capsaicina , Profármacos , Animales , Capsaicina/farmacología , Curación de Fractura , Osteotomía , Dolor Postoperatorio , Profármacos/farmacología , Conejos , Ratas , Ropivacaína/farmacología
5.
Microbiol Spectr ; 9(1): e0033921, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34190595

RESUMEN

The toxicity of tenofovir alafenamide (TAF) hemifumarate (HF) was evaluated when administered by continuous subcutaneous (s.c.) infusion via an external infusion pump for 28 days to rats and dogs. The toxicokinetics of TAF and two metabolites, tenofovir (TFV) and tenofovir diphosphate (TFV-DP) were also evaluated. After administration of TAF HF in rats and dogs, primary systemic findings supported an inflammatory response that was considered minimal to mild. Gross pathology and histopathologic evaluation of tissue surrounding the s.c. infusion site revealed signs of inflammation, including edema, mass formation, fibrosis, and mononuclear cell inflammation in groups receiving ≥300 µg/kg/day in rats and ≥25 µg/day in dogs. Although these changes were observed in animals receiving vehicle, the severity was greater in animals receiving TAF HF. Changes in the local tissue were considered a TAF HF-mediated exacerbation of an inflammatory response to the presence of the catheter. In rats, systemic and local findings were considered not adverse due to their low severity and reversibility; therefore, the "no observed adverse effect level" (NOAEL) was set at 1,000 µg/kg/day. Because none of the systemic findings were related to systemic exposure to TAF, the systemic NOAEL was set at 250 µg/kg/day in dogs. Due to the severity of the observations noted, a NOAEL for local toxicity could not be established. Although these results might allow for exploration of tolerability and pharmacokinetics of s.c. administered TAF HF in humans, data suggest a local reaction may develop in humans at doses below a clinically relevant dose. IMPORTANCE Human immunodeficiency virus (HIV) infection continues to be a serious global human health issue, with ∼38 million people living with HIV worldwide at the end of 2019. HIV preexposure prophylaxis (PrEP) has introduced the use of antiretroviral therapies as another helpful tool for slowing the spread of HIV worldwide. One possible solution to the problem of inconsistent access and poor adherence to HIV PrEP therapies is the development of subcutaneous (s.c.) depots or s.c. implantable devices that continuously administer protective levels of an HIV PrEP therapy for weeks, months, or even years at a time. We evaluate here the toxicity of tenofovir alafenamide, a potent inhibitor or HIV replication, after continuous s.c. infusion in rats and dogs for HIV PrEP.


Asunto(s)
Alanina/toxicidad , Infusiones Subcutáneas/métodos , Tenofovir/análogos & derivados , Tenofovir/toxicidad , Adenina/análogos & derivados , Animales , Fármacos Anti-VIH , Perros , Edema , Infecciones por VIH/tratamiento farmacológico , VIH-1 , Masculino , Organofosfatos , Profilaxis Pre-Exposición , Ratas , Tenofovir/uso terapéutico
6.
Bone Rep ; 8: 90-94, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29955626

RESUMEN

Sclerostin antibody (Scl-Ab) stimulates bone formation, which with long-term treatment, attenuates over time. The cellular and molecular mechanisms responsible for the attenuation of bone formation are not well understood, but in aged ovariectomized (OVX) rats, the reduction in vertebral cancellous bone formation is preceded by a reduction in osteoprogenitor (OP) number and significant induction of signaling pathways known to suppress mitogenesis and cell cycle progression in the osteocyte (OCy) (Taylor et al., 2016). To determine if the reduction in OP number is associated with a decrease in proliferation, aged OVX rats were administered vehicle or Scl-Ab for 9 or 29 days and implanted with continuous-delivery 5-bromo-2'-deoxyuridine (BrdU) mini-osmotic pumps 5 days prior to necropsy. The total number of BrdU-labeled osteoblasts (OB) was quantified in vertebral cancellous bone to indirectly assess the effects of Scl-Ab treatment on OP proliferation at the time of activation of modeling-based bone formation at day 9 and at the time of maximal mineralizing surface, initial decrease in OP number, and transcriptional changes in the OCy at day 29. Compared with vehicle, Scl-Ab resulted in an increase in the total number of BrdU-positive OB (+260%) at day 9 that decreased with continued treatment (+50%) at day 29. These differences in proliferation occurred at time points when the increase in total OB number was significant and similar in magnitude. These findings suggest that reduced OP proliferation contributes to the decrease in OP numbers, an effect that would limit the OB pool and contribute to the attenuation of bone formation that occurs with long-term Scl-Ab treatment.

7.
J Bone Miner Res ; 32(4): 788-801, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27865001

RESUMEN

Romosozumab (Romo), a humanized sclerostin antibody, is a bone-forming agent under development for treatment of osteoporosis. To examine the effects of Romo on bone quality, mature cynomolgus monkeys (cynos) were treated 4 months post- ovariectomy (OVX) with vehicle, 3 mg/kg, or 30 mg/kg Romo for 12 months, or with 30 mg/kg Romo for 6 months followed by vehicle for 6 months (30/0). Serum bone formation markers were increased by Romo during the first 6 months, corresponding to increased cancellous, endocortical, and periosteal bone formation in rib and iliac biopsies at months 3 and 6. Dual-energy X-ray absorptiometry (DXA) bone mineral density (BMD) was increased by 14% to 26% at the lumbar spine and proximal femur at month 12, corresponding to significant increases in bone strength at 3 and 30 mg/kg in lumbar vertebral bodies and cancellous cores, and at 30 mg/kg in the femur diaphysis and neck. Bone mass remained positively correlated with strength at these sites, with no changes in calculated material properties at cortical sites. These bone-quality measures were also maintained in the 30/0 group, despite a gradual loss of accrued bone mass. Normal bone mineralization was confirmed by histomorphometry and ash analyses. At the radial diaphysis, a transient, reversible 2% reduction in cortical BMD was observed with Romo at month 6, despite relative improvements in bone mineral content (BMC). High-resolution pQCT confirmed this decline in cortical BMD at the radial diaphysis and metaphysis in a second set of OVX cynos administered 3 mg/kg Romo for 6 months. Radial diaphyseal strength was maintained and metaphyseal strength improved with Romo as estimated by finite element modeling. Decreased radial cortical BMD was a consequence of increased intracortical remodeling, with no increase in cortical porosity. Romo resulted in marked improvements in bone mass, architecture, and bone strength, while maintaining bone quality in OVX cynos, supporting its bone efficacy and safety profile. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Absorciometría de Fotón , Anticuerpos Monoclonales/farmacología , Densidad Ósea/efectos de los fármacos , Cuello Femoral , Ovariectomía , Radio (Anatomía) , Animales , Diáfisis/diagnóstico por imagen , Diáfisis/metabolismo , Femenino , Cuello Femoral/diagnóstico por imagen , Cuello Femoral/metabolismo , Macaca fascicularis , Radio (Anatomía)/diagnóstico por imagen , Radio (Anatomía)/metabolismo
8.
Clin Sci (Lond) ; 110(6): 645-54, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16417466

RESUMEN

In the present study, we have investigated the effect of (i) ET-1 (endothelin-1) and its precursor, big ET-1, on MMP (matrix metalloproteinase)-2 and MMP-9 synthesis and activity in osteosarcoma tissue, and (ii) ET-1 receptor antagonists on cell invasion. Using Western blotting, zymography, RT-PCR (reverse transcription-PCR), immunohistochemistry, immunofluorescence and Northern blotting, we have shown that ET-1 and ET-1 receptors (ET(A) and ET(B)) were expressed in these cells. Additionally, we have demonstrated that ET-1 markedly induced the synthesis and activity of MMP-2, which was significantly increased when compared with MMP-9. Furthermore, inhibition of NF-kappaB (nuclear factor kappaB) activation blocked MMP-2 production and activity, indicating the involvement of NF-kappaB, a ubiquitous transcription factor playing a central role in the differentiation, proliferation and malignant transformation. Since ET-1 acts as an autocrine mediator through gelatinase induction and because inhibition of ET(A) receptor is beneficial for reducing both basal and ET-1-induced osteosarcoma cell invasion, targeting this receptor could be an attractive therapeutic alternative for the successful treatment of osteosarcoma.


Asunto(s)
Neoplasias Óseas/metabolismo , Endotelina-1/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Osteosarcoma/metabolismo , Adolescente , Adulto , Antioxidantes/farmacología , Northern Blotting/métodos , Western Blotting/métodos , Línea Celular Tumoral , Niño , Activación Enzimática , Femenino , Humanos , Inmunohistoquímica , Masculino , Metaloproteinasa 2 de la Matriz/análisis , Metaloproteinasa 9 de la Matriz/análisis , Persona de Mediana Edad , FN-kappa B/análisis , Pirrolidinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estadísticas no Paramétricas , Tiocarbamatos/farmacología , Inhibidor Tisular de Metaloproteinasa-1/análisis , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/análisis , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA