Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(26): E6075-E6084, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891689

RESUMEN

Photosystem II (PSII), a multisubunit protein complex of the photosynthetic electron transport chain, functions as a water-plastoquinone oxidoreductase, which is vital to the initiation of photosynthesis and electron transport. Although the structure, composition, and function of PSII are well understood, the mechanism of PSII biogenesis remains largely elusive. Here, we identified a nuclear-encoded pentatricopeptide repeat (PPR) protein LOW PHOTOSYNTHETIC EFFICIENCY 1 (LPE1; encoded by At3g46610) in Arabidopsis, which plays a crucial role in PSII biogenesis. LPE1 is exclusively targeted to chloroplasts and directly binds to the 5' UTR of psbA mRNA which encodes the PSII reaction center protein D1. The loss of LPE1 results in less efficient loading of ribosome on the psbA mRNA and great synthesis defects in D1 protein. We further found that LPE1 interacts with a known regulator of psbA mRNA translation HIGH CHLOROPHYLL FLUORESCENCE 173 (HCF173) and facilitates the association of HCF173 with psbA mRNA. More interestingly, our results indicate that LPE1 associates with psbA mRNA in a light-dependent manner through a redox-based mechanism. This study enhances our understanding of the mechanism of light-regulated D1 synthesis, providing important insight into PSII biogenesis and the functional maintenance of efficient photosynthesis in higher plants.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Transporte de Membrana/metabolismo , Complejo de Proteína del Fotosistema II/biosíntesis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores Eucarióticos de Iniciación/genética , Proteínas de Transporte de Membrana/genética , Complejo de Proteína del Fotosistema II/genética
2.
Plant Cell ; 27(3): 787-805, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25794933

RESUMEN

Iron (Fe) is an indispensable micronutrient for plant growth and development. The regulation of Fe homeostasis in plants is complex and involves a number of transcription factors. Here, we demonstrate that a basic helix-loop-helix (bHLH) transcription factor, bHLH104, belonging to the IVc subgroup of bHLH family, acts as a key component positively regulating Fe deficiency responses. Knockout of bHLH104 in Arabidopsis thaliana greatly reduced tolerance to Fe deficiency, whereas overexpression of bHLH104 had the opposite effect and led to accumulation of excess Fe in soil-grown conditions. The activation of Fe deficiency-inducible genes was substantially suppressed by loss of bHLH104. Further investigation showed that bHLH104 interacted with another IVc subgroup bHLH protein, IAA-LEUCINE RESISTANT3 (ILR3), which also plays an important role in Fe homeostasis. Moreover, bHLH104 and ILR3 could bind directly to the promoters of Ib subgroup bHLH genes and POPEYE (PYE) functioning in the regulation of Fe deficiency responses. Interestingly, genetic analysis showed that loss of bHLH104 could decrease the tolerance to Fe deficiency conferred by the lesion of BRUTUS, which encodes an E3 ligase and interacts with bHLH104. Collectively, our data support that bHLH104 and ILR3 play pivotal roles in the regulation of Fe deficiency responses via targeting Ib subgroup bHLH genes and PYE expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Homeostasis/efectos de los fármacos , Hierro/farmacología , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes de Plantas , Deficiencias de Hierro , Modelos Biológicos , Mutación/genética , Motivos de Nucleótidos/genética , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Suelo
3.
Plant Cell Rep ; 37(2): 279-291, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29080907

RESUMEN

KEY MESSAGE: M-type thioredoxins are required to regulate zeaxanthin epoxidase activity and to maintain the steady-state level of the proton motive force, thereby influencing NPQ properties under low-light conditions in Arabidopsis. Non-photochemical quenching (NPQ) helps protect photosynthetic organisms from photooxidative damage via the non-radiative dissipation of energy as heat. Energy-dependent quenching (qE) is a major constituent of NPQ. However, the mechanism underlying the regulation of qE is not well understood. In this study, we demonstrate that the m-type thioredoxins TRX-m1, TRX-m2, and TRX-m4 (TRX-ms) interact with the xanthophyll cycle enzyme zeaxanthin epoxidase (ZE) and are required for maintaining the redox-dependent stabilization of ZE by regulating its intermolecular disulfide bridges. Reduced ZE activity and accumulated zeaxanthin levels were observed under TRX-ms deficiency. Furthermore, concurrent deficiency of TRX-ms resulted in a significant increase in proton motive force (pmf) and acidification of the thylakoid lumen under low irradiance, perhaps due to the significantly reduced ATP synthase activity under TRX-ms deficiency. The increased pmf, combined with acidification of the thylakoid lumen and the accumulation of zeaxanthin, ultimately contribute to the elevated stable qE in VIGS-TRX-m2m4/m1 plants under low-light conditions. Taken together, these results indicate that TRX-ms are involved in regulating NPQ-dependent photoprotection in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Clorofila/metabolismo , Tiorredoxinas en Cloroplasto/metabolismo , Luz , Fotosíntesis/efectos de la radiación , Xantófilas/metabolismo , Proteínas de Arabidopsis/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Unión Proteica , Fuerza Protón-Motriz/efectos de la radiación , Tilacoides/metabolismo , Zeaxantinas/metabolismo
4.
Plant Physiol ; 172(3): 1720-1731, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27609860

RESUMEN

Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants.


Asunto(s)
Arabidopsis/fisiología , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Pigmentos Biológicos/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomasa , Metabolismo de los Hidratos de Carbono/efectos de la radiación , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Clorofila/metabolismo , Regulación hacia Abajo/genética , Regulación hacia Abajo/efectos de la radiación , Genes de Plantas , Luz , Metaboloma/efectos de la radiación , Mutación/genética , Fotosíntesis/efectos de la radiación , Plastidios/genética , Plastidios/efectos de la radiación , Empalme del ARN/genética , Empalme del ARN/efectos de la radiación , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
5.
Plant Cell ; 26(3): 1213-29, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24632535

RESUMEN

Under high-irradiance conditions, plants must efficiently protect photosystem II (PSII) from damage. In this study, we demonstrate that the chloroplast protein HYPERSENSITIVE TO HIGH LIGHT1 (HHL1) is expressed in response to high light and functions in protecting PSII against photodamage. Arabidopsis thaliana hhl1 mutants show hypersensitivity to high light, drastically decreased PSII photosynthetic activity, higher nonphotochemical quenching activity, a faster xanthophyll cycle, and increased accumulation of reactive oxygen species following high-light exposure. Moreover, HHL1 deficiency accelerated the degradation of PSII core subunits under high light, decreasing the accumulation of PSII core subunits and PSII-light-harvesting complex II supercomplex. HHL1 primarily localizes in the stroma-exposed thylakoid membranes and associates with the PSII core monomer complex through direct interaction with PSII core proteins CP43 and CP47. Interestingly, HHL1 also directly interacts, in vivo and in vitro, with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), which functions in the repair and reassembly of PSII. Furthermore, the hhl1 lqy1 double mutants show increased photosensitivity compared with single mutants. Taken together, these results suggest that HHL1 forms a complex with LQY1 and participates in photodamage repair of PSII under high light.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Mutación , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo
6.
J Integr Plant Biol ; 59(4): 234-239, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28225199

RESUMEN

In Arabidopsis, both the membrane-anchored receptor-like kinase (RLK) BAK1 and the receptor-like cytoplasmic kinase (RLCK) BIK1 are important mediators of transmembrane signal transduction that regulate plant development and immunity. However, little attention has been paid to their genetic association. This study found the bak1 bik1 double mutant of Arabidopsis displayed a severe dwarfism phenotype due to constitutive immunity and cell death in developing plants. These data suggest that BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/inmunología , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Muerte Celular , Mutación/genética , Fenotipo
7.
Plant Cell Physiol ; 57(12): 2586-2599, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27818379

RESUMEN

Chloroplast development is an essential process for plant growth that is regulated by numerous proteins. Plastid-encoded plastid RNA polymerase (PEP) is a large complex that regulates plastid gene transcription and chloroplast development. However, many proteins in this complex remain to be identified. Here, through large-scale screening of Arabidopsis mutants by Chl fluorescence imaging, we identified a novel protein, DELAYED GREENING 238 (DG238), which is involved in regulating chloroplast development and plastid gene expression. Loss of DG238 retards plant growth, delays young leaf greening, affects chloroplast development and lowers photosynthetic efficiency. Moreover, blue-native PAGE (BN-PAGE) and Western blot analysis indicated that PSII and PSI protein levels are reduced in dg238 mutants. DG238 is mainly expressed in young tissues and is regulated by light signals. Subcellular localization analysis showed that DG238 is a nuclear-encoded chloroplast nucleoid protein. More interestingly, DG238 was co-expressed with FLN1, which encodes an essential subunit of the PEP complex. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays showed that DG238 can also interact with FLN1. Taken together, these results suggest that DG238 may function as a component of the PEP complex that is important for the early stage of chloroplast development and helps regulate PEP-dependent plastid gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/ultraestructura , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Arabidopsis/enzimología , Arabidopsis/efectos de la radiación , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Cloroplastos/enzimología , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Proteínas Nucleares/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/ultraestructura , Plastidios/enzimología , Plastidios/ultraestructura , Transporte de Proteínas , Transcripción Genética
8.
Plant J ; 80(6): 1072-84, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25335639

RESUMEN

Microbe-associated molecular pattern (MAMP)-triggered immunity plays critical roles in the basal resistance defense response in plants. Chitin and peptidoglycan (PGN) are major molecular patterns for fungi and bacteria, respectively. Two rice (Oryza sativa) lysin motif-containing proteins, OsLYP4 and OsLYP6, function as receptors that sense bacterial PGN and fungal chitin. These membrane receptors, which lack intracellular kinase domains, likely contain another component for transmembrane immune signal transduction. Here, we demonstrate that the rice LysM receptor-like kinase OsCERK1, a key component of the chitin elicitor signaling pathway, also plays an important role in PGN-triggered immunity in rice. Silencing of OsCERK1 suppressed PGN-induced (and chitin-induced) immunity responses, including reactive oxygen species generation, defense gene expression, and callose deposition, indicating that OsCERK1 is essential for both PGN and chitin signaling initiated by OsLYP4 and OsLYP6. OsLYP4 associated with OsLYP6 and the rice chitin receptor chitin oligosaccharide elicitor-binding protein (CEBiP) in the absence of PGN or chitin, and treatment with PGN or chitin led to their disassociation in vivo. OsCERK1 associated with OsLYP4 or OsLYP6 when induced by PGN but it associated with OsLYP4, OsLYP6, or CEBiP under chitin treatment, suggesting the presence of different patterns of ligand-induced heterooligomeric receptor complexes. Furthermore, the receptor-like cytoplasmic kinase OsRLCK176 functions downstream of OsCERK1 in the PGN and chitin signaling pathways, suggesting that these MAMPs share overlapping intracellular signaling components. Therefore, OsCERK1 plays dual roles in PGN and chitin signaling in rice innate immunity and as an adaptor involved in signal transduction at the plasma membrane in conjunction with OsLYP4 and OsLYP6.


Asunto(s)
Quitina/metabolismo , Oryza/genética , Peptidoglicano/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Membrana Celular/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/inmunología , Oryza/fisiología , Inmunidad de la Planta , Proteínas de Plantas/genética
9.
Plant Cell ; 24(8): 3406-19, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22872757

RESUMEN

Plant innate immunity relies on successful detection of microbe-associated molecular patterns (MAMPs) of invading microbes via pattern recognition receptors (PRRs) at the plant cell surface. Here, we report two homologous rice (Oryza sativa) lysin motif-containing proteins, LYP4 and LYP6, as dual functional PRRs sensing bacterial peptidoglycan (PGN) and fungal chitin. Live cell imaging and microsomal fractionation consistently revealed the plasma membrane localization of these proteins in rice cells. Transcription of these two genes could be induced rapidly upon exposure to bacterial pathogens or diverse MAMPs. Both proteins selectively bound PGN and chitin but not lipopolysaccharide (LPS) in vitro. Accordingly, silencing of either LYP specifically impaired PGN- or chitin- but not LPS-induced defense responses in rice, including reactive oxygen species generation, defense gene activation, and callose deposition, leading to compromised resistance against bacterial pathogen Xanthomonas oryzae and fungal pathogen Magnaporthe oryzae. Interestingly, pretreatment with excess PGN dramatically attenuated the alkalinization response of rice cells to chitin but not to flagellin; vice versa, pretreatment with chitin attenuated the response to PGN, suggesting that PGN and chitin engage overlapping perception components in rice. Collectively, our data support the notion that LYP4 and LYP6 are promiscuous PRRs for PGN and chitin in rice innate immunity.


Asunto(s)
Quitina/inmunología , Oryza/inmunología , Peptidoglicano/inmunología , Inmunidad de la Planta , Proteínas de Plantas/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Secuencias de Aminoácidos , Membrana Celular/inmunología , Membrana Celular/metabolismo , Flagelina/inmunología , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucanos/metabolismo , Lipopolisacáridos/farmacología , Magnaporthe/inmunología , Magnaporthe/patogenicidad , Oryza/genética , Oryza/microbiología , Filogenia , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , Receptores de Reconocimiento de Patrones/metabolismo , Activación Transcripcional , Xanthomonas/inmunología , Xanthomonas/patogenicidad
10.
Plant J ; 76(5): 861-74, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24118453

RESUMEN

Photosynthetic electron transport is the major energy source for cellular metabolism in plants, and also has the potential to generate excess reactive oxygen species that cause irreversible damage to photosynthetic apparatus under adverse conditions. Ferredoxins (Fds), as the electron-distributing hub in the chloroplast, contribute to redox regulation and antioxidant defense. However, the steady-state levels of photosynthetic Fd decrease in plants when they are exposed to environmental stress conditions. To understand the effect of Fd down-regulation on plant growth, we characterized Arabidopsis thaliana plants lacking Fd2 (Fd2-KO) under long-term high light (HL) conditions. Unexpectedly, Fd2-KO plants exhibited efficient photosynthetic capacity and stable thylakoid protein complexes. At the transcriptional level, photoprotection-related genes were up-regulated more in the mutant plants, suggesting that knockout Fd2 lines possess a relatively effective photo-acclimatory responses involving enhanced plastid redox signaling. In contrast to the physiological characterization of Fd2-KO under short-term HL, the plastoquinone pool returned to a relatively balanced redox state via elevated PGR5-dependent cyclic electron flow during extended HL. fd2 pgr5 double mutant plants displayed severely impaired photosynthetic capacity under HL treatment, further supporting a role for PGR5 in adaptation to HL in the Fd2-KO plants. These results suggest potential benefits of reducing Fd levels in plants grown under long-term HL conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Ferredoxinas/metabolismo , Luz , Fotosíntesis/fisiología , Aclimatación , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Ferredoxinas/genética , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Estrés Fisiológico
11.
Plant Physiol ; 163(4): 1710-28, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24151299

RESUMEN

Chloroplastic m-type thioredoxins (TRX m) are essential redox regulators in the light regulation of photosynthetic metabolism. However, recent genetic studies have revealed novel functions for TRX m in meristem development, chloroplast morphology, cyclic electron flow, and tetrapyrrole synthesis. The focus of this study is on the putative role of TRX m1, TRX m2, and TRX m4 in the biogenesis of the photosynthetic apparatus in Arabidopsis (Arabidopsis thaliana). To that end, we investigated the impact of single, double, and triple TRX m deficiency on chloroplast development and the accumulation of thylakoid protein complexes. Intriguingly, only inactivation of three TRX m genes led to pale-green leaves and specifically reduced stability of the photosystem II (PSII) complex, implying functional redundancy between three TRX m isoforms. In addition, plants silenced for three TRX m genes displayed elevated levels of reactive oxygen species, which in turn interrupted the transcription of photosynthesis-related nuclear genes but not the expression of chloroplast-encoded PSII core proteins. To dissect the function of TRX m in PSII biogenesis, we showed that TRX m1, TRX m2, and TRX m4 interact physically with minor PSII assembly intermediates as well as with PSII core subunits D1, D2, and CP47. Furthermore, silencing three TRX m genes disrupted the redox status of intermolecular disulfide bonds in PSII core proteins, most notably resulting in elevated accumulation of oxidized CP47 oligomers. Taken together, our results suggest an important role for TRX m1, TRX m2, and TRX m4 proteins in the biogenesis of PSII, and they appear to assist the assembly of CP47 into PSII.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiorredoxinas en Cloroplasto/metabolismo , Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema II/biosíntesis , Tiorredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Tiorredoxinas en Cloroplasto/genética , Cloroplastos/ultraestructura , Secuencia Conservada , Disulfuros/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Oxidación-Reducción , Fenotipo , Hojas de la Planta/metabolismo , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia , Tiorredoxinas/genética , Tilacoides/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 38(17): 2868-73, 2013 Sep.
Artículo en Zh | MEDLINE | ID: mdl-24380313

RESUMEN

OBJECTIVE: To investigate the in vitro protective effect of Pinus massoniana bark extracts (PMBE) against cisplatin-induced nephrotoxicity in human embryonic kidney cells (HEK293), and preliminarily study its mechanism. METHOD: Human embryonic kidney cells (HEK293) were cultured in vitro. The MTT assay was adopted to test the effect of PMBE and cisplatin on growth of HEK293 cells, and the protective effect of PMBE on cisplatin-induced nephrotoxicity of HEK293, and then detect the intracellular reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) content, catalase (CAT), superoxide dismutase (SOD) and activity of thioredoxin reductase (TrxR). RESULT: PMBE could promote growth of HEK293 cells at low concentrations, but generate slight nephrotoxicity at high concentration. Cisplatin could inhibit growth of HEK293 cells, increase ROS and MDA content, while reducing SOD, CAT and TrxR. The pre-protective PMBE was added to reduce cisplatin's injury to HEK293 cells, ROS, MDA and GSH content, SOD, CAT and TrxR within certain range. CONCLUSION: PMBE at specific concentration has the protective effect in cisplatin-induced nephrotoxicity in HEK293 cells. Its mechanism may be related to PMBE's antioxidant activity.


Asunto(s)
Cisplatino/toxicidad , Riñón/efectos de los fármacos , Pinus/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Animales , Antioxidantes/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Células HEK293 , Humanos , Riñón/enzimología , Riñón/metabolismo , Malondialdehído/metabolismo , Ratones , Corteza de la Planta/química , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
13.
Plant Cell Rep ; 31(6): 1021-32, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22218675

RESUMEN

Dephosphorylation plays a pivotal role in regulating plant growth, development and abiotic/biotic stress responses. Here, we characterized a plant and fungi atypical dual-specificity phosphatase (PFA-DSP) subfamily member, OsPFA-DSP1, from rice. OsPFA-DSP1 was determined to be a functional protein tyrosine phosphatase (PTP) in vitro using phosphatase activity assays. Quantitative real-time PCR and GENEVESTIGATOR analysis showed that OsPFA-DSP1 mRNA was induced by drought stress. Transfection of rice protoplasts showed that OsPFA-DSP1 accumulated in both the cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP1 in tobacco increased sensitivity to drought stress and insensitivity to ABA-induced stomatal closure and inhibition of stomatal opening. Furthermore, overexpression of OsPFA-DSP1 in rice also increased sensitivity to drought stress. These results indicated that OsPFA-DSP1 is a functional PTP and may act as a negative regulator in drought stress responses.


Asunto(s)
Sequías , Fosfatasas de Especificidad Dual/metabolismo , Nicotiana/fisiología , Oryza/enzimología , Oryza/fisiología , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada/genética , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Iones , Metales/farmacología , Datos de Secuencia Molecular , Oryza/efectos de los fármacos , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes/aislamiento & purificación , Estrés Fisiológico/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Especificidad por Sustrato/efectos de los fármacos , Nicotiana/efectos de los fármacos , Nicotiana/genética
14.
Genes (Basel) ; 13(1)2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35052479

RESUMEN

RNA editing is essential for compensating for defects or mutations in haploid organelle genomes and is regulated by numerous trans-factors. Pentatricopeptide repeat (PPR) proteins are the prime factors that are involved in RNA editing; however, many have not yet been identified. Here, we screened the plastid-targeted PLS-DYW subfamily of PPR proteins belonging to Arabidopsis thaliana and identified ORGANELLE TRANSCRIPT PROCESSING 970 (OTP970) as a key player in RNA editing in plastids. A loss-of-function otp970 mutant was impaired in RNA editing of ndhB transcripts at site 149 (ndhB-C149). RNA-immunoprecipitation analysis indicated that OTP970 was associated with the ndhB-C149 site. The complementation of the otp970 mutant with OTP970 lacking the DYW domain (OTP970∆DYW) failed to restore the RNA editing of ndhB-C149. ndhB gene encodes the B subunit of the NADH dehydrogenase-like (NDH) complex; however, neither NDH activity and stability nor NDH-PSI supercomplex formation were affected in otp970 mutant compared to the wild type, indicating that alteration in amino acid sequence is not necessary for NdhB function. Together, these results suggest that OTP970 is involved in the RNA editing of ndhB-C149 and that the DYW domain is essential for its function.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/genética , Mutación , NADH Deshidrogenasa/genética , Plantas Modificadas Genéticamente/genética , Edición de ARN , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , NADH Deshidrogenasa/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
15.
Plant Cell Rep ; 30(6): 981-95, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21249367

RESUMEN

The 12-oxo-phytodienoic acid reductases (OPRs) belong to the old yellow enzyme family of flavoenzymes and form multiple subfamilies in angiosperm plants. In our previous study, a comparative genomic analysis showed that five OPR subfamilies (subs. I-V) occur in monocots, and two subfamilies (subs. I and II) in dicots. Here, a comparative study of five OsOPR genes, representing five subfamilies (I-V) in rice, was performed to provide insights into OPR biochemical properties and physiological importance. Comparative analysis of the three-dimensional structure by homology modeling indicated all five OsOPR proteins contained a highly conserved backbone with (α/ß)(8)-barrels, while two middle variable regions (MVR i and ii) were also detected and defined. Analysis of enzymatic characteristics revealed that all five OsOPR fusion proteins exhibit distinct substrate specificity. Different catalytic activity was observed using racemic OPDA and trans-2-hexen-1-al as substrates, suggesting OsOPR family genes participate in two main branches of the octadecanoid pathway, including the allene oxide synthase and hydroperoxide lyase pathways which regulate various developmental processes and/or defense responses. The transcript profiles of five OsOPR genes exhibited strong tissue-specific and inducible expression patterns under abiotic stress, hormones and plant wounding treatments. Furthermore, the transcriptions of OsOPR04-1 (OsOPR11) and OsOPR08-1 (OsOPR7), representing subs. I and II, respectively, were observed in all six selected tissues and with all above-stress treatments. This suggests that these two subfamilies play an important role during different developmental stages and in response to stresses; while the expressions of OsOPR06-1 (OsOPR6), OsOPR01-1 (OsOPR10) and OsOPR02-1 (OsOPR8), representing subs. III, IV and V respectively, were strongly up-regulated with abscisic acid (ABA) and indoleacetic acid (IAA) treatments in roots, suggesting these three subfamilies play an important role in responding to hormones especially ABA and IAA signals in roots.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Familia de Multigenes/genética , Oryza/enzimología , Oryza/genética , Oxidorreductasas/genética , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Biocatálisis , Perfilación de la Expresión Génica , Cuerpos de Inclusión/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Oxidorreductasas/química , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/aislamiento & purificación , Alineación de Secuencia , Homología Estructural de Proteína , Fracciones Subcelulares/metabolismo
16.
Plant Cell Rep ; 30(7): 1219-30, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21327389

RESUMEN

Abscisic acid-, stress- and ripening (ASR) -induced proteins are plant-specific proteins whose expression is up-regulated under abiotic stresses or during fruit ripening. In this study, we characterized an ASR protein from plantain to explore its physiological roles under osmotic stress. The expression pattern of MpAsr gene shows that MpAsr gene changed little at the mRNA level, while the MpASR protein accumulates under osmotic treatment. Through bioinformatic-based predictions, circular dichroism spectrometry, and proteolysis and heat-stability assays, we determined that the MpASR protein is an intrinsically unstructured protein in solution. We demonstrated that the hydrophilic MpASR protein could protect L: -lactate dehydrogenase (L: -LDH) from cold-induced aggregation. Furthermore, heterologous expression of MpAsr in Escherichia coli and Arabidopsis enhanced the tolerance of transformants to osmotic stress. Transgenic 35S::MpAsr Arabidopsis seeds had a higher germination frequency than wild-type seeds under unfavorable conditions. At the physiological level, 35S::MpAsr Arabidopsis showed increased soluble sugars and decreased cell membrane damage under osmotic stress. Thus, our results suggest that the MpASR protein may act as an osmoprotectant and water-retaining molecule to help cell adjustment to water deficit caused by osmotic stress.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/metabolismo , Musa/genética , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , L-Lactato Deshidrogenasa/metabolismo , Malondialdehído/análisis , Datos de Secuencia Molecular , Musa/metabolismo , Ósmosis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Semillas/genética , Semillas/metabolismo , Estrés Fisiológico , Agua/metabolismo , Zinc/metabolismo
17.
J Integr Plant Biol ; 52(3): 315-23, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20377692

RESUMEN

Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack.


Asunto(s)
Fusarium/fisiología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantago/genética , Plantago/microbiología , Estrés Fisiológico/genética , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiología , Secuencia de Bases , Sequías , Perfilación de la Expresión Génica , Genes de Plantas/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
18.
Zhong Yao Cai ; 33(11): 1795-8, 2010 Nov.
Artículo en Zh | MEDLINE | ID: mdl-21434445

RESUMEN

OBJECTIVE: To study the industrialized extraction technology and the function of hyperlipidemic regulating of Laminaria japonica polysaccharides. METHODS: With the orthogonal design L9 (3(4)), different influential elements of the industrialized extraction technology of Laminaria japonica polysaccharides were investigated. Mice treated with different doses of polysaccharides were applied to investigate its-function of hyperlipidemic regulating for 15 days. RESULTS: 5% Na2CO3, 3 hours and 80 degrees C was the best extraction condition, and the extraction rate was 2.13%. Different groups of polysaccharides with different levels of purity and dose lowered the TG, TC level of the mice in various degree. CONCLUSION: Laminaria japonica polysaccharides have obvious effect on hyperlipidemic regulating.


Asunto(s)
Hiperlipidemias/tratamiento farmacológico , Hipolipemiantes/farmacología , Laminaria/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Tecnología Farmacéutica/métodos , Animales , Colesterol/sangre , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Femenino , Hiperlipidemias/sangre , Hipolipemiantes/aislamiento & purificación , Masculino , Ratones , Polisacáridos/administración & dosificación , Temperatura , Factores de Tiempo , Triglicéridos/sangre
19.
BMC Evol Biol ; 9: 90, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19416520

RESUMEN

BACKGROUND: The 12-oxo-phytodienoic acid reductases (OPRs) are enzymes that catalyze the reduction of double-bonds in alpha, beta-unsaturated aldehydes or ketones and are part of the octadecanoid pathway that converts linolenic acid to jasmonic acid. In plants, OPRs belong to the old yellow enzyme family and form multigene families. Although discoveries about this family in Arabidopsis and other species have been reported in some studies, the evolution and function of multiple OPRs in plants are not clearly understood. RESULTS: A comparative genomic analysis was performed to investigate the phylogenetic relationship, structural evolution and functional divergence among OPR paralogues in plants. In total, 74 OPR genes were identified from 11 species representing the 6 major green plant lineages: green algae, mosses, lycophytes, gymnosperms, monocots and dicots. Phylogenetic analysis showed that seven well-conserved subfamilies exist in plants. All OPR genes from green algae were clustered into a single subfamily, while those from land plants fell into six other subfamilies, suggesting that the events leading to the expansion of the OPR family occurred in land plants. Further analysis revealed that lineage-specific expansion, especially by tandem duplication, contributed to the current OPR subfamilies in land plants after divergence from aquatic plants. Interestingly, exon/intron structure analysis showed that the gene structures of OPR paralogues exhibits diversity in intron number and length, while the intron positions and phase were highly conserved across different lineage species. These observations together with the phylogenetic tree revealed that successive single intron loss, as well as indels within introns, occurred during the process of structural evolution of OPR paralogues. Functional divergence analysis revealed that altered functional constraints have occurred at specific amino acid positions after diversification of the paralogues. Most notably, significant functional divergence was also found in all pairs, except for the II/IV, II/V and V/VI pairs. Strikingly, analysis of the site-specific profiles established by posterior probability revealed that the positive-selection sites and/or critical amino acid residues for functional divergence are mainly distributed in alpha-helices and substrate binding loop (SBL), indicating the functional importance of these regions for this protein family. CONCLUSION: This study highlights the molecular evolution of the OPR gene family in all plant lineages and indicates critical amino acid residues likely relevant for the distinct functional properties of the paralogues. Further experimental verification of these findings may provide valuable information on the OPRs' biochemical and physiological functions.


Asunto(s)
Evolución Molecular , Familia de Multigenes , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Filogenia , Plantas/genética , Secuencia de Aminoácidos , Hibridación Genómica Comparativa , ADN de Plantas/genética , Genes de Plantas , Mutación INDEL , Intrones , Datos de Secuencia Molecular , Plantas/enzimología , Selección Genética , Alineación de Secuencia
20.
Cell Host Microbe ; 23(2): 241-253.e6, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29396039

RESUMEN

Plants initiate immunity by cell-surface pattern-recognition receptors (PRRs), which perceive non-self molecules. PRRs are predominantly receptor serine/threonine (Ser/Thr) kinases that are evolutionarily related to animal interleukin-1 receptor-associated kinase (IRAK)/Pelle-soluble kinases. However, how the activity of these receptor kinases is modulated remains poorly understood. We report that the Arabidopsis PRR chitin elicitor receptor kinase 1 (CERK1) is autophosphorylated in unstimulated cells at tyrosine428 (Tyr428), a modification that is required for CERK1 activation upon binding to the fungal cell wall component chitin. Upon chitin activation, CERK1 recruits the CERK1-interacting protein phosphatase 1 (CIPP1), a predicted Ser/Thr phosphatase, to dephosphorylate Tyr428 and dampen CERK1 signaling. CIPP1 subsequently dissociates from Tyr428-dephosphorylated CERK1, allowing CERK1 to regain Tyr428 autophosphorylation and return to a standby state. This work sheds light onto plant chitin signaling and shows that a receptor kinase and phosphatase can coordinately regulate signal transduction of a receptor kinase through a phosphorylation cycle.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Botrytis/inmunología , Inmunidad de la Planta/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Quitina/metabolismo , Activación Enzimática , Fosforilación , Plantas Modificadas Genéticamente/genética , Proteínas Quinasas/metabolismo , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA