Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Syst Biol ; 72(6): 1220-1232, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37449764

RESUMEN

Despite the economic, ecological, and scientific importance of the genera Salix L. (willows) and Populus L. (poplars, cottonwoods, and aspens) Salicaceae, we know little about the sources of differences in species diversity between the genera and of the phylogenetic conflict that often confounds estimating phylogenetic trees. Salix subgenera and sections, in particular, have been difficult to classify, with one recent attempt termed a "spectacular failure" due to a speculated radiation of the subgenera Vetrix and Chamaetia. Here, we use targeted sequence capture to understand the evolutionary history of this portion of the Salicaceae plant family. Our phylogenetic hypothesis was based on 787 gene regions and identified extensive phylogenetic conflict among genes. Our analysis supported some previously described subgeneric relationships and confirmed the polyphyly of others. Using an fbranch analysis, we identified several cases of hybridization in deep branches of the phylogeny, which likely contributed to discordance among gene trees. In addition, we identified a rapid increase in diversification rate near the origination of the Vetrix-Chamaetia clade in Salix. This region of the tree coincided with several nodes that lacked strong statistical support, indicating a possible increase in incomplete lineage sorting due to rapid diversification. The extraordinary level of both recent and ancient hybridization in both Salix and Populus have played important roles in the diversification and diversity in these two genera.


Asunto(s)
Populus , Salix , Filogenia , Salix/genética , Populus/genética , Evolución Biológica , Hibridación Genética
2.
Plant Cell ; 31(3): 715-733, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30760564

RESUMEN

The last eukaryotic common ancestor had two classes of introns that are still found in most eukaryotic lineages. Common U2-type and rare U12-type introns are spliced by the major and minor spliceosomes, respectively. Relatively few splicing factors have been shown to be specific to the minor spliceosome. We found that the maize (Zea mays) RNA binding motif protein 48 (RBM48) is a U12 splicing factor that functions to promote cell differentiation and repress cell proliferation. RBM48 is coselected with the U12 splicing factor, zinc finger CCCH-type, RNA binding motif, and Ser/Arg rich 2/Rough endosperm 3 (RGH3). Protein-protein interactions between RBM48, RGH3, and U2 Auxiliary Factor (U2AF) subunits suggest major and minor spliceosome factors required for intron recognition form complexes with RBM48. Human RBM48 interacts with armadillo repeat containing 7 (ARMC7). Maize RBM48 and ARMC7 have a conserved protein-protein interaction. These data predict that RBM48 is likely to function in U12 splicing throughout eukaryotes and that U12 splicing promotes endosperm cell differentiation in maize.


Asunto(s)
Proteínas de Plantas/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Empalmosomas , Zea mays/genética , Diferenciación Celular , Endospermo/genética , Endospermo/fisiología , Intrones/genética , Fenotipo , Proteínas de Plantas/genética , ARN Nuclear Pequeño/genética , Motivos de Unión al ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Zea mays/fisiología
3.
Heredity (Edinb) ; 126(4): 630-639, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33510464

RESUMEN

The development of non-recombining sex chromosomes has radical effects on the evolution of discrete sexes and sexual dimorphism. Although dioecy is rare in plants, sex chromosomes have evolved repeatedly throughout the diversification of angiosperms, and many of these sex chromosomes are relatively young compared to those found in vertebrates. In this study, we designed and used a sequence capture array to identify a novel sex-linked region (SLR) in Salix nigra, a basal species in the willow clade, and demonstrated that this species has XY heterogamety. We did not detect any genetic overlap with the previously characterized ZW SLRs in willows, which map to a different chromosome. The S. nigra SLR is characterized by strong recombination suppression across a 2 MB region and an excess of low-frequency alleles, resulting in a low Tajima's D compared to the remainder of the genome. We speculate that either a recent bottleneck in population size or factors related to positive or background selection generated this differential pattern of Tajima's D on the X and autosomes. This discovery provides insights into factors that may influence the evolution of sex chromosomes in plants and contributes to a large number of recent observations that underscore their dynamic nature.


Asunto(s)
Salix , Procesos de Determinación del Sexo , Alelos , Salix/genética , Cromosomas Sexuales/genética
4.
Plant Mol Biol ; 101(3): 325-339, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31399934

RESUMEN

KEY MESSAGE: Combining genetic engineering of MPK4 activity and quantitative proteomics, we established an in planta system that enables rapid study of MPK4 signaling networks and potential substrate proteins. Mitogen activated protein kinase 4 (MPK4) is a multifunctional kinase that regulates various signaling events in plant defense, growth, light response and cytokinesis. The question of how a single protein modulates many distinct processes has spurred extensive research into the physiological outcomes resulting from genetic perturbation of MPK4. However, the mechanism by which MPK4 functions is still poorly understood due to limited data on the MPK4 networks including substrate proteins and downstream pathways. Here we introduce an experimental system that combines genetic engineering of kinase activity and quantitative proteomics to rapidly study the signaling networks of MPK4. First, we transiently expressed a constitutively active (MPK4CA) and an inactive (MPK4IN) version of a Brassica napus MPK4 (BnMPK4) in Nicotiana benthamiana leaves. Proteomics analysis revealed that BnMPK4 activation affects multiple pathways (e.g., metabolism, redox regulation, jasmonic acid biosynthesis and stress responses). Furthermore, BnMPK4 activation also increased protein phosphorylation in the phosphoproteome, from which putative MPK4 substrates were identified. Using protein kinase assay, we validated that a transcription factor TCP8-like (TCP8) and a PP2A regulatory subunit TAP46-like (TAP46) were indeed phosphorylated by BnMPK4. Taken together, we demonstrated the utility of proteomics and phosphoproteomics in elucidating kinase signaling networks and in identification of downstream substrates.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteómica , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Brassica napus/enzimología , Ingeniería Genética , Sistema de Señalización de MAP Quinasas , Fosforilación , Inmunidad de la Planta , Hojas de la Planta/enzimología , Proteoma , Transducción de Señal , Nicotiana/enzimología
5.
Nat Commun ; 14(1): 7144, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932261

RESUMEN

Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.


Asunto(s)
Salix , Salix/genética , Cromosomas Sexuales , Cromosoma Y , Genoma , Evolución Molecular , Procesos de Determinación del Sexo
6.
Hortic Res ; 8(1): 170, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34333534

RESUMEN

Sex dimorphism and gene expression were studied in developing catkins in 159 F2 individuals from the bioenergy crop Salix purpurea, and potential mechanisms and pathways for regulating sex development were explored. Differential expression, eQTL, bisulfite sequencing, and network analysis were used to characterize sex dimorphism, detect candidate master regulator genes, and identify pathways through which the sex determination region (SDR) may mediate sex dimorphism. Eleven genes are presented as candidates for master regulators of sex, supported by gene expression and network analyses. These include genes putatively involved in hormone signaling, epigenetic modification, and regulation of transcription. eQTL analysis revealed a suite of transcription factors and genes involved in secondary metabolism and floral development that were predicted to be under direct control of the sex determination region. Furthermore, data from bisulfite sequencing and small RNA sequencing revealed strong differences in expression between males and females that would implicate both of these processes in sex dimorphism pathways. These data indicate that the mechanism of sex determination in Salix purpurea is likely different from that observed in the related genus Populus. This further demonstrates the dynamic nature of SDRs in plants, which involves a multitude of mechanisms of sex determination and a high rate of turnover.

7.
Plant Direct ; 4(8): e00245, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32875268

RESUMEN

Jasmonate is an essential phytohormone regulating plant growth, development, and defense. Alternative splicing (AS) in jasmonate ZIM-domain (JAZ) repressors is well-characterized and plays an important role in jasmonate signaling regulation. However, it is unknown whether other genes in the jasmonate signaling pathway are regulated by AS. We explore the potential for AS regulation in three Arabidopsis genotypes (WT, jaz2, jaz7) in response to methyl jasmonate (MeJA) treatment with respect to: (a) differential AS, (b) differential miRNA targeted AS, and (c) AS isoforms with novel functions. AS events identified from transcriptomic data were validated with proteomic data. Protein interaction networks identified two genes, SKIP and ALY4 whose products have both DNA- and RNA-binding affinities, as potential key regulators mediating jasmonate signaling and AS regulation. We observed cases where AS alone, or AS and transcriptional regulation together, can influence gene expression in response to MeJA. Twenty-one genes contain predicted miRNA target sites subjected to AS, which implies that AS is coupled to miRNA regulation. We identified 30 cases where alternatively spliced isoforms may have novel functions. For example, AS of bHLH160 generates an isoform without a basic domain, which may convert it from an activator to a repressor. Our study identified potential key regulators in AS regulation of jasmonate signaling pathway. These findings highlight the importance of AS regulation in the jasmonate signaling pathway, both alone and in collaboration with other regulators. SIGNIFICANCE STATEMENT: By exploring alternative splicing, we demonstrate its regulation in the jasmonate signaling pathway alone or in collaboration with other posttranscriptional regulations such as nonsense and microRNA-mediated decay. A signal transduction network model for alternative splicing in jasmonate signaling pathway was generated, contributing to our understanding for this important, prevalent, but relatively unexplored regulatory mechanism in plants.

8.
Redox Biol ; 37: 101758, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33080441

RESUMEN

E-cigarette (e-cig) aerosols are complex mixtures of various chemicals including humectants (propylene glycol (PG) and vegetable glycerin (VG)), nicotine, and various flavoring additives. Emerging research is beginning to challenge the "relatively safe" perception of e-cigarettes. Recent studies suggest e-cig aerosols provoke oxidative stress; however, details of the underlying molecular mechanisms remain unclear. Here we used a redox proteomics assay of thiol total oxidation to identify signatures of site-specific protein thiol modifications in Sprague-Dawley rat lungs following in vivo e-cig aerosol exposures. Histologic evaluation of rat lungs exposed acutely to e-cig aerosols revealed mild perturbations in lung structure. Bronchoalveolar lavage (BAL) fluid analysis demonstrated no significant change in cell count or differential. Conversely, total lung glutathione decreased significantly in rats exposed to e-cig aerosol compared to air controls. Redox proteomics quantified the levels of total oxidation for 6682 cysteine sites representing 2865 proteins. Protein thiol oxidation and alterations by e-cig exposure induced perturbations of protein quality control, inflammatory responses and redox homeostasis. Perturbations of protein quality control were confirmed with semi-quantification of total lung polyubiquitination and 20S proteasome activity. Our study highlights the importance of redox control in the pulmonary response to e-cig exposure and the utility of thiol-based redox proteomics as a tool for elucidating the molecular mechanisms underlying this response.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Animales , Pulmón , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley , Compuestos de Sulfhidrilo
9.
Curr Opin Plant Biol ; 54: 61-68, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32106015

RESUMEN

The presence of thousands of independent origins of dioecy in angiosperms provides a unique opportunity to address the parallel evolution of the molecular pathways underlying unisexual flowers. Recent progress towards identifying sex determination genes has identified hormone response pathways, mainly associated with cytokinin and ethylene response pathways, as having been recruited multiple times independently to control unisexuality. Moreover, transcriptomics has begun to identify commonalities among intermediate sections of signal transduction pathways. These recent advances set the stage for development of a comparative evolutionary development research program to identify the shared and unique aspects of the genetic pathways of unisexual flower development in angiosperms.


Asunto(s)
Flores , Magnoliopsida , Citocininas , Plantas , Reproducción
10.
Genetics ; 207(2): 465-480, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28839042

RESUMEN

One difficulty when identifying alternative splicing (AS) events in plants is distinguishing functional AS from splicing noise. One way to add confidence to the validity of a splice isoform is to observe that it is conserved across evolutionarily related species. We use a high throughput method to identify junction-based conserved AS events from RNA-Seq data across nine plant species, including five grass monocots (maize, sorghum, rice, Brachpodium, and foxtail millet), plus two nongrass monocots (banana and African oil palm), the eudicot Arabidopsis, and the basal angiosperm Amborella In total, 9804 AS events were found to be conserved between two or more species studied. In grasses containing large regions of conserved synteny, the frequency of conserved AS events is twice that observed for genes outside of conserved synteny blocks. In plant-specific RS and RS2Z subfamilies of the serine/arginine (SR) splice-factor proteins, we observe both conservation and divergence of AS events after the whole genome duplication in maize. In addition, plant-specific RS and RS2Z splice-factor subfamilies are highly connected with R2R3-MYB in STRING functional protein association networks built using genes exhibiting conserved AS. Furthermore, we discovered that functional protein association networks constructed around genes harboring conserved AS events are enriched for phosphatases, kinases, and ubiquitylation genes, which suggests that AS may participate in regulating signaling pathways. These data lay the foundation for identifying and studying conserved AS events in the monocots, particularly across grass species, and this conserved AS resource identifies an additional layer between genotype to phenotype that may impact future crop improvement efforts.


Asunto(s)
Empalme Alternativo , Secuencia Conservada , Evolución Molecular , Poaceae/genética , Arecaceae/genética , Musa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Sintenía
11.
Genome Biol Evol ; 9(4): 1013-1029, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444194

RESUMEN

Plant 3R-MYB transcription factors are an important subgroup of the MYB super family in plants; however, their evolutionary history and functions remain poorly understood. We identified 225 3R-MYB proteins from 65 plant species, including algae and all major lineages of land plants. Two segmental duplication events preceding the common ancestor of angiosperms have given rise to three subgroups of the 3R-MYB proteins. Five conserved introns in the domain region of the 3R-MYB genes were identified, which arose through a step-wise pattern of intron gain during plant evolution. Alternative splicing (AS) analysis of selected species revealed that transcripts from more than 60% of 3R-MYB genes undergo AS. AS could regulate transcriptional activity for some of the plant 3R-MYBs by generating different regulatory motifs. The 3R-MYB genes of all subgroups appear to be enriched for Mitosis-Specific Activator element core sequences within their upstream promoter region, which suggests a functional involvement in cell cycle. Notably, expression of 3R-MYB genes from different species exhibits differential regulation under various abiotic stresses. These data suggest that the plant 3R-MYBs function in both cell cycle regulation and abiotic stress response, which may contribute to the adaptation of plants to a sessile lifestyle.

12.
Genome Announc ; 5(45)2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29122862

RESUMEN

We report here the genome sequences of three newly isolated phages that infect Mycobacterium smegmatis mc2155. Phages Findley, Hurricane, and TBond007 were discovered in geographically distinct locations and are related to cluster K mycobacteriophages, with Findley being similar to subcluster K2 phages and Hurricane and TBond007 being similar to subcluster K3 phages.

13.
Artículo en Inglés | MEDLINE | ID: mdl-25859541

RESUMEN

Alternative splicing (AS) plays important roles in many plant functions, but its conservation across the plant kingdom is not known. We describe a methodology to identify AS events and identify conserved AS events across large phylogenetic distances using RNA-Seq datasets. We applied this methodology to transcriptome data from nine angiosperms including Amborella, the single sister species to all other extant flowering plants. AS events within 40-70% of the expressed multi-exonic genes per species were found, 27,120 of which are conserved among two or more of the taxa studied. While many events are species specific, many others are shared across long evolutionary distances suggesting they have functional significance. Conservation of AS event data provides an estimate of the number of ancestral AS events present at each node of the tree representing the nine species studied. Furthermore, the presence or absence of AS isoforms between species with different whole genome duplication (WGD) histories provides the opportunity to examine the impact of WDG on AS potential. Examining AS in gene families identifies those with high rates of AS, and conservation can distinguish ancient events vs. recent or species specific adaptations. The MADS-box and SR protein families are found to represent families with low and high occurrences of AS, respectively, yet their AS events were likely present in the MRCA of angiosperms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA