Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunity ; 54(9): 2072-2088.e7, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34320366

RESUMEN

Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Activación de Macrófagos/fisiología , Macrófagos/metabolismo , Remodelación Ventricular/fisiología , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Miocardio/metabolismo , Troponina T/genética
2.
Circulation ; 149(1): 48-66, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37746718

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS: We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS: We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS: These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Miocarditis , Humanos , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Linfocitos T CD8-positivos , Miocarditis/inducido químicamente , Miocarditis/metabolismo , Receptor de Muerte Celular Programada 1 , Antígeno CTLA-4 , Ligandos , Quimiocinas/metabolismo , Macrófagos/metabolismo , ARN/metabolismo
3.
Circulation ; 145(10): 765-782, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35113652

RESUMEN

BACKGROUND: Recent studies have established that CCR2 (C-C chemokine receptor type 2) marks proinflammatory subsets of monocytes, macrophages, and dendritic cells that contribute to adverse left ventricle (LV) remodeling and heart failure progression. Elucidation of the effector mechanisms that mediate adverse effects of CCR2+ monocytes, macrophages, and dendritic cells will yield important insights into therapeutic strategies to suppress myocardial inflammation. METHODS: We used mouse models of reperfused myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation to investigate CCL17 (C-C chemokine ligand 17). We used Ccl17 knockout mice, flow cytometry, RNA sequencing, biochemical assays, cell trafficking studies, and in vivo cell depletion to identify the cell types that generate CCL17, define signaling pathways that controlled its expression, delineate the functional importance of CCL17 in adverse LV remodeling and heart failure progression, and determine the mechanistic basis by which CCL17 exerts its effects. RESULTS: We demonstrated that CCL17 is expressed in CCR2+ macrophages and cluster of differentiation 11b+ conventional dendritic cells after myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation. We clarified the transcriptional signature of CCL17+ macrophages and dendritic cells and identified granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling as a key regulator of CCL17 expression through cooperative activation of STAT5 (signal transducer and activator of transcription 5) and canonical NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) signaling. Ccl17 deletion resulted in reduced LV remodeling, decreased myocardial fibrosis and cardiomyocyte hypertrophy, and improved LV systolic function after myocardial infarction and angiotensin II and phenylephrine infusion. We observed increased abundance of regulatory T cells (Tregs) in the myocardium of injured Ccl17 knockout mice. CCL17 inhibited Treg recruitment through biased activation of CCR4. CCL17 activated Gq signaling and CCL22 (C-C chemokine ligand 22) activated both Gq and ARRB (ß-arrestin) signaling downstream of CCR4. CCL17 competitively inhibited CCL22 stimulated ARRB signaling and Treg migration. We provide evidence that Tregs mediated the protective effects of Ccl17 deletion on myocardial inflammation and adverse LV remodeling. CONCLUSIONS: These findings identify CCL17 as a proinflammatory mediator of CCR2+ macrophages and dendritic cells and suggest that inhibition of CCL17 may serve as an effective strategy to promote Treg recruitment and suppress myocardial inflammation.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Angiotensina II/farmacología , Animales , Quimiocina CCL17/metabolismo , Quimiocina CCL17/farmacología , Toxina Diftérica/metabolismo , Toxina Diftérica/farmacología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Inflamación/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenilefrina/metabolismo , Fenilefrina/farmacología , Linfocitos T Reguladores/metabolismo , Remodelación Ventricular
4.
Acta Pharmacol Sin ; 44(9): 1777-1789, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37186122

RESUMEN

Histone modification plays an important role in pathological cardiac hypertrophy and heart failure. In this study we investigated the role of a histone arginine demethylase, Jumonji C domain-containing protein 6 (JMJD6) in pathological cardiac hypertrophy. Cardiac hypertrophy was induced in rats by subcutaneous injection of isoproterenol (ISO, 1.2 mg·kg-1·d-1) for a week. At the end of the experiment, the rats underwent echocardiography, followed by euthanasia and heart collection. We found that JMJD6 levels were compensatorily increased in ISO-induced hypertrophic cardiac tissues, but reduced in patients with heart failure with reduced ejection fraction (HFrEF). Furthermore, we demonstrated that JMJD6 overexpression significantly attenuated ISO-induced hypertrophy in neonatal rat cardiomyocytes (NRCMs) evidenced by the decreased cardiomyocyte surface area and hypertrophic genes expression. Cardiac-specific JMJD6 overexpression in rats protected the hearts against ISO-induced cardiac hypertrophy and fibrosis, and rescued cardiac function. Conversely, depletion of JMJD6 by single-guide RNA (sgRNA) exacerbated ISO-induced hypertrophic responses in NRCMs. We revealed that JMJD6 interacted with NF-κB p65 in cytoplasm and reduced nuclear levels of p65 under hypertrophic stimulation in vivo and in vitro. Mechanistically, JMJD6 bound to p65 and demethylated p65 at the R149 residue to inhibit the nuclear translocation of p65, thus inactivating NF-κB signaling and protecting against pathological cardiac hypertrophy. In addition, we found that JMJD6 demethylated histone H3R8, which might be a new histone substrate of JMJD6. These results suggest that JMJD6 may be a potential target for therapeutic interventions in cardiac hypertrophy and heart failure.


Asunto(s)
Insuficiencia Cardíaca , FN-kappa B , Animales , Ratas , Cardiomegalia/inducido químicamente , Cardiomegalia/prevención & control , Cardiomegalia/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Histonas/metabolismo , Isoproterenol/toxicidad , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Ratas Sprague-Dawley , ARN Guía de Sistemas CRISPR-Cas , Volumen Sistólico
5.
Circ Res ; 124(6): 881-890, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30661445

RESUMEN

RATIONALE: Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. OBJECTIVE: To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. METHODS AND RESULTS: We synthesized and tested the performance of a positron emission tomography radiotracer (68Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2-/- mice, demonstrating target specificity. Autoradiography demonstrated that 68Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. CONCLUSIONS: These findings demonstrate the sensitivity and specificity of 68Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.


Asunto(s)
Corazón/diagnóstico por imagen , Macrófagos/fisiología , Monocitos/fisiología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Animales , Movimiento Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Imagen Molecular , Tomografía de Emisión de Positrones , Receptores CCR2/análisis
6.
Acta Pharmacol Sin ; 38(5): 638-650, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28239158

RESUMEN

We previously identified AG-690/11026014 (6014) as a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that effectively prevented angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. In the present study, we reported a new synthesis route for 6014, and investigated its protective effects on Ang II-induced cardiac remodeling and cardiac dysfunction and the underlying mechanisms in mice. We designed a new synthesis route to obtain a sufficient quantity of 6014 for this in vivo study. C57BL/6J mice were infused with Ang II and treated with 6014 (10, 30, 90 mg·kg-1·d-1, ig) for 4 weeks. Then two-dimensional echocardiography was performed to assess the cardiac function and structure. Histological changes of the hearts were examined with HE staining and Masson's trichrome staining. The protein expression was evaluated by Western blot, immunohistochemistry and immunofluorescence assays. The activities of sirtuin-1 (SIRT-1) and the content of NAD+ were detected with the corresponding test kits. Treatment with 6014 dose-dependently improved cardiac function, including LVEF, CO and SV and reversed the changes of cardiac structure in Ang II-infused mice: it significantly ameliorated Ang II-induced cardiac hypertrophy evidenced by attenuating the enlargement of cardiomyocytes, decreased HW/BW and LVW/BW, and decreased expression of hypertrophic markers ANF, BNP and ß-MHC; it also prevented Ang II-induced cardiac fibrosis, as implied by the decrease in excess accumulation of extracellular matrix (ECM) components collagen I, collagen III and FN. Further studies revealed that treatment with 6014 did not affect the expression levels of PARP-1, but dose-dependently inhibited the activity of PARP-1 and subsequently restored the activity of SIRT-1 in heart tissues due to the decreased consumption of NAD+ and attenuated Poly-ADP-ribosylation (PARylation) of SIRT-1. In conclusion, the novel PARP-1 inhibitor 6014 effectively protects mice against AngII-induced cardiac remodeling and improves cardiac function. Thus, 6014 might be a potential therapeutic agent for heart diseases..


Asunto(s)
Cardiomegalia/terapia , Cardiotónicos/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Tioglicolatos/uso terapéutico , Remodelación Ventricular/efectos de los fármacos , Xantinas/uso terapéutico , Angiotensina II/farmacología , Animales , Cardiomegalia/inducido químicamente , Cardiotónicos/síntesis química , Fibrosis/inducido químicamente , Fibrosis/terapia , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Sirtuina 1/metabolismo , Tioglicolatos/síntesis química , Xantinas/síntesis química
7.
Acta Pharmacol Sin ; 38(9): 1257-1268, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28649129

RESUMEN

Phosphodiesterase-9A (PDE9A) expression is upregulated during cardiac hypertrophy and heart failure. Accumulating evidence suggests that PDE9A might be a promising therapeutic target for heart diseases. The present study sought to investigate the effects and underlying mechanisms of C33(S), a novel selective PDE9A inhibitor, on cardiac hypertrophy in vitro and in vivo. Treatment of neonatal rat cardiomyocytes (NRCMs) with PE (100 µmol/L) or ISO (1 µmol/L) induced cardiac hypertrophy characterized by significantly increased cell surface areas and increased expression of fetal genes (ANF and BNP). Furthermore, PE or ISO significantly increased the expression of PDE9A in the cells; whereas knockdown of PDE9A significantly alleviated PE-induced hypertrophic responses. Moreover, pretreatment with PDE9A inhibitor C33(S) (50 and 500 nmol/L) or PF-7943 (2 µmol/L) also alleviated the cardiac hypertrophic responses in PE-treated NRCMs. Abdominal aortic constriction (AAC)-induced cardiac hypertrophy and ISO-induced heart failure were established in SD rats. In ISO-treated rats, oral administration of C33(S) (9, 3, and 1 mg·kg-1·d-1, for 3 consecutive weeks) significantly increased fractional shortening (43.55%±3.98%, 54.79%±1.95%, 43.98%±7.96% vs 32.18%±6.28%), ejection fraction (72.97%±4.64%, 84.29%±1.56%, 73.41%±9.37% vs 49.17%±4.20%) and cardiac output (60.01±9.11, 69.40±11.63, 58.08±8.47 mL/min vs 48.97±2.11 mL/min) but decreased the left ventricular internal diameter, suggesting that the transition to heart failure was postponed by C33(S). We further revealed that C33(S) significantly elevated intracellular cGMP levels, phosphorylation of phospholamban (PLB) and expression of SERCA2a in PE-treated NRCMs in vitro and in ISO-induced heart failure model in vivo. Our results demonstrate that C33(S) effectively protects against cardiac hypertrophy and postpones the transition to heart failure, suggesting that it is a promising agent in the treatment of cardiac diseases.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Cardiomegalia/tratamiento farmacológico , GMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Masculino , Miocitos Cardíacos/efectos de los fármacos , Pirazoles/administración & dosificación , Pirazoles/química , Pirimidinas/administración & dosificación , Pirimidinas/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
8.
Biol Pharm Bull ; 37(8): 1301-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24871044

RESUMEN

The aims of this study were to investigate the effect of chinonin in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration in C57BL/6 mice and to examine the possible mechanisms. The neurotoxin MPTP was employed to create a subacute Parkinson's disease (PD)-like model in C57BL/6 mice. Chinonin (10, 20, 40 mg/kg body weight) was intraperitoneally administered 0.5 h after MPTP (30 mg/kg) injection for 7 d consecutively. Chinonin showed neuroprotective effects in the MPTP-treated mice PD model by ameliorating motor impairment in the catwalk and open-field tests. Consistently, chinonin reduced loss of dopaminergic neurons in the substantia nigra and prevented depletion of dopamine and its metabolites 3-methoxy-4-hydroxy-phenylacetic acid and homovanillic acid in the striatum of mice. Compared with the MPTP group, in the chinonin plus MPTP groups significant increases of superoxide dismutase activity and glutathione levels were observed as well as a distinct reduction of lipid peroxidation product malondialdehyde in the striatum. Taken together, we propose that chinonin exerts neuroprotective effects in C57BL/6 mouse model of PD and these effects may be due to chinonin's antioxidative property.


Asunto(s)
Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Xantonas/uso terapéutico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Marcha/efectos de los fármacos , Glutatión/metabolismo , Ácido Homovanílico/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Neurotoxinas , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/patología , Superóxido Dismutasa/metabolismo , Xantonas/farmacología
9.
J Am Heart Assoc ; 12(4): e028442, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752267

RESUMEN

Background Viral myocarditis is characterized by leukocyte infiltration of the heart and cardiomyocyte death. We recently identified C-C chemokine ligand (CCL) 17 as a proinflammatory effector of C-C chemokine receptor 2-positive macrophages and dendritic cells that are recruited to the heart and contribute to adverse left ventricular remodeling following myocardial infarction and pressure overload. Methods and Results Mouse encephalomyocarditis virus was used to investigate the function of CCL17 in a viral myocarditis model. Ccl17Gfp reporter and knockout mice were used to identify the cell types that express CCL17 and delineate the functional importance of CCL17 in encephalomyocarditis virus clearance and myocardial inflammation. Cardiac CCL17 was expressed in C-C chemokine receptor 2-positive macrophages and dendritic cells following encephalomyocarditis virus infection. Colony-stimulating factor 2 (granulocyte-macrophage colony-stimulating factor) signaling was identified as a key regulator of CCL17 expression. Ccl17 deletion resulted in impaired encephalomyocarditis virus clearance, increased cardiomyocyte death, and higher mortality during infection early stage, and aggravated hypertrophy and fibrotic responses in infection long-term stage. An increased abundance of regulatory T cells was detected in the myocardium of injured Ccl17-deficient mice. Depletion of regulatory T cells in Ccl17-deficient mice abrogated the detrimental role of CCL17 deletion by restoring interferon signaling. Conclusions Collectively, these findings identify CCL17 as an important mediator of the host immune response during cardiac viral infection early stage and suggest that CCL17 targeted therapies should be avoided in acute viral myocarditis.


Asunto(s)
Miocarditis , Virosis , Ratones , Animales , Miocarditis/genética , Miocarditis/prevención & control , Linfocitos T Reguladores , Macrófagos/metabolismo , Ratones Noqueados , Receptores de Quimiocina/metabolismo , Quimiocina CCL17/metabolismo
10.
bioRxiv ; 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37162929

RESUMEN

Background: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1/PD-L1 or CTLA4 have revolutionized cancer management but are associated with devastating immune-related adverse events (irAEs) including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI-myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. While much has been learned regarding the role of T-cells in ICI-myocarditis, little is understood regarding the identity, transcriptional diversity, and functions of infiltrating macrophages. Methods: We employed an established murine ICI myocarditis model ( Ctla4 +/- Pdcd1 -/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization and molecular imaging and antibody neutralization studies. Results: We observed marked increases in CCR2 + monocyte-derived macrophages and CD8 + T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2 + subpopulation highly expressing Cxcl9 , Cxcl10 , Gbp2b , and Fcgr4 that originated from CCR2 + monocytes. Importantly, a similar macrophage population expressing CXCL9 , CXCL10 , and CD16α (human homologue of mouse FcgR4) was found selectively expanded in patients with ICI myocarditis compared to other forms of heart failure and myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9 + Cxcl10 + macrophages via IFN-γ and CXCR3 signaling pathways. Depleting CD8 + T-cells, macrophages, and blockade of IFN-γ signaling blunted the expansion of Cxcl9 + Cxcl10 + macrophages in the heart and attenuated myocarditis suggesting that this interaction was necessary for disease pathogenesis. Conclusion: These data demonstrate that ICI-myocarditis is associated with the expansion of a specific population of IFN-γ induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.

11.
J Clin Invest ; 129(6): 2293-2304, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30830879

RESUMEN

Non-apoptotic forms of cell death can trigger sterile inflammation through the release of danger-associated molecular patterns, which are recognized by innate immune receptors. However, despite years of investigation the mechanisms which initiate inflammatory responses after heart transplantation remain elusive. Here, we demonstrate that ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, decreases the level of pro-ferroptotic hydroperoxy-arachidonoyl-phosphatidylethanolamine, reduces cardiomyocyte cell death and blocks neutrophil recruitment following heart transplantation. Inhibition of necroptosis had no effect on neutrophil trafficking in cardiac grafts. We extend these observations to a model of coronary artery ligation-induced myocardial ischemia reperfusion injury where inhibition of ferroptosis resulted in reduced infarct size, improved left ventricular systolic function, and reduced left ventricular remodeling. Using intravital imaging of cardiac transplants, we uncover that ferroptosis orchestrates neutrophil recruitment to injured myocardium by promoting adhesion of neutrophils to coronary vascular endothelial cells through a TLR4/TRIF/type I IFN signaling pathway. Thus, we have discovered that inflammatory responses after cardiac transplantation are initiated through ferroptotic cell death and TLR4/Trif-dependent signaling in graft endothelial cells. These findings provide a platform for the development of therapeutic strategies for heart transplant recipients and patients, who are vulnerable to ischemia reperfusion injury following restoration of coronary blood flow.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Ferroptosis/inmunología , Trasplante de Corazón , Daño por Reperfusión Miocárdica/inmunología , Miocardio/inmunología , Infiltración Neutrófila , Neutrófilos/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Ciclohexilaminas/farmacología , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Neutrófilos/patología , Fenilendiaminas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Receptor Toll-Like 4/genética , Función Ventricular Izquierda/efectos de los fármacos , Función Ventricular Izquierda/genética , Función Ventricular Izquierda/inmunología
12.
Mol Cell Endocrinol ; 460: 1-13, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28579116

RESUMEN

Silent mating type information regulation 2 homolog 3 (SIRT3) is a major protective mediator that ameliorates oxidative stress and mitochondrial dysfunction, which are associated with the pathogenesis of epithelial-mesenchymal transition (EMT). The present study was aimed to investigate the potential role of SIRT3 in renal tubular EMT both in vitro and in vivo. Firstly, we showed that the expression of SIRT3 was repressed in angiotensin II-induced EMT. SIRT3 deficiency triggered EMT response, while over-expression of SIRT3 attenuated EMT response. In addition, over-expression of SIRT3 repressed AngⅡ-induced excessive production of mitochondrial superoxide, as well as mitochondrial dysfunction evidenced by the maintenance of mitochondrial number and morphology, and the stabilization of mitochondrial membrane potential. In conclusion, these findings identify a protective role of SIRT3 against angiotensin II-induced EMT in the kidney, and suggest SIRT3 upregulation is a potential therapeutic strategy for the treatment of renal tubulointerstitial fibrosis.


Asunto(s)
Transición Epitelial-Mesenquimal , Túbulos Renales/patología , Mitocondrias/patología , Estrés Oxidativo , Sirtuina 3/metabolismo , Angiotensina II , Animales , Presión Sanguínea , Línea Celular , Citoprotección , Regulación hacia Abajo , Túbulos Renales/ultraestructura , Potencial de la Membrana Mitocondrial , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Ratas , Sirtuina 3/deficiencia , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Sístole
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA