Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 16(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37895653

RESUMEN

As the energy demand is expected to double over the next 30 years, there has been a major initiative towards advancing the technology of both energy harvesting and storage for renewable energy. In this work, we explore a subset class of dielectrics for energy storage since ferroelectrics offer a unique combination of characteristics needed for energy storage devices. We investigate ferroelectric lead-free 0.5[Ba(Ti0.8Zr0.2)O3]-0.5(Ba0.7Ca0.3)TiO3 epitaxial thin films with different crystallographic orientations grown by pulsed laser deposition. We focus our attention on the influence of the crystallographic orientation on the microstructure, ferroelectric, and dielectric properties. Our results indicate an enhancement of the polarization and strong anisotropy in the dielectric response for the (001)-oriented film. The enhanced ferroelectric, energy storage, and dielectric properties of the (001)-oriented film is explained by the coexistence of orthorhombic-tetragonal phase, where the disordered local structure is in its free energy minimum.

2.
J Phys Condens Matter ; 34(37)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35779516

RESUMEN

Superconducting niobium nitride (NbN) continues to be investigated decades on, largely in part to its advantageous superconducting properties and wide use in superconducting electronics. Particularly, NbN-based superconducting nanowire single-photon detectors (SNSPDs) have shown exceptional performance and NbN remains as the material of choice in developing future generation quantum devices. In this perspective, we describe the processing-structure-property relationships governing the superconducting properties of NbN films. We further discuss the complex interplay between the material properties, processing parameters, substrate materials, device architectures, and performance of SNSPDs. We also highlight the latest progress in optimizing SNSPD performance parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA