Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(7): e1011339, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980841

RESUMEN

BACKGROUND: Varicose veins (VV) are one of the common human diseases, but the role of genetics in its development is not fully understood. METHODS: We conducted an exome-wide association study of VV using whole-exome sequencing data from the UK Biobank, and focused on common and rare variants using single-variant association analysis and gene-level collapsing analysis. FINDINGS: A total of 13,823,269 autosomal genetic variants were obtained after quality control. We identified 36 VV-related independent common variants mapping to 34 genes by single-variant analysis and three rare variant genes (PIEZO1, ECE1, FBLN7) by collapsing analysis, and most associations between genes and VV were replicated in FinnGen. PIEZO1 was the closest gene associated with VV (P = 5.05 × 10-31), and it was found to reach exome-wide significance in both single-variant and collapsing analyses. Two novel rare variant genes (ECE1 and METTL21A) associated with VV were identified, of which METTL21A was associated only with females. The pleiotropic effects of VV-related genes suggested that body size, inflammation, and pulmonary function are strongly associated with the development of VV. CONCLUSIONS: Our findings highlight the importance of causal genes for VV and provide new directions for treatment.


Asunto(s)
Secuenciación del Exoma , Exoma , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Várices , Humanos , Várices/genética , Femenino , Masculino , Exoma/genética , Polimorfismo de Nucleótido Simple , Enzimas Convertidoras de Endotelina/genética , Persona de Mediana Edad , Variación Genética , Adulto , Canales Iónicos
2.
Mol Psychiatry ; 29(4): 914-928, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38212376

RESUMEN

We describe evidence for dissociable roles of the medial and lateral orbitofrontal cortex (OFC) in major depressive disorder (MDD) from structure, functional activation, functional connectivity, metabolism, and neurochemical systems. The reward-related medial orbitofrontal cortex has lower connectivity and less reward sensitivity in MDD associated with anhedonia symptoms; and the non-reward related lateral OFC has higher functional connectivity and more sensitivity to non-reward/aversive stimuli in MDD associated with negative bias symptoms. Importantly, we propose that conventional antidepressants act to normalize the hyperactive lateral (but not medial) OFC to reduce negative bias in MDD; while other treatments are needed to operate on the medial OFC to reduce anhedonia, with emerging evidence suggesting that ketamine may act in this way. The orbitofrontal cortex is the key cortical region in emotion and reward, and the current review presents much new evidence about the different ways that the medial and lateral OFC are involved in MDD.


Asunto(s)
Anhedonia , Trastorno Depresivo Mayor , Corteza Prefrontal , Humanos , Anhedonia/fisiología , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Emociones/fisiología , Ketamina/uso terapéutico , Ketamina/farmacología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Recompensa
3.
Mol Psychiatry ; 29(10): 3097-3105, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38678085

RESUMEN

BACKGROUND: Dementia has a long prodromal stage with various pathophysiological manifestations; however, the progression of pre-diagnostic changes remains unclear. We aimed to determine the evolutional trajectories of multiple-domain clinical assessments and health conditions up to 15 years before the diagnosis of dementia. METHODS: Data was extracted from the UK-Biobank, a longitudinal cohort that recruited over 500,000 participants from March 2006 to October 2010. Each demented subject was matched with 10 healthy controls. We performed logistic regressions on 400 predictors covering a comprehensive range of clinical assessments or health conditions. Their evolutional trajectories were quantified using adjusted odds ratios (ORs) and FDR-corrected p-values under consecutive timeframes preceding the diagnosis of dementia. FINDINGS: During a median follow-up of 13.7 [Interquartile range, IQR 12.9-14.2] years until July 2022, 7620 subjects were diagnosed with dementia. In general, upon approaching the diagnosis, demented subjects witnessed worse functional assessments and a higher prevalence of health conditions. Associations up to 15 years preceding the diagnosis comprised declined physical strength (hand grip strength, OR 0.65 [0.63-0.67]), lung dysfunction (peak expiratory flow, OR 0.78 [0.76-0.81]) and kidney dysfunction (cystatin C, OR 1.13 [1.11-1.16]), comorbidities of coronary heart disease (OR 1.78 [1.67-1.91]), stroke (OR 2.34 [2.1-1.37]), diabetes (OR 2.03 [1.89-2.18]) and a series of mental disorders. Cognitive functions in multiple tests also demonstrate decline over a decade before the diagnosis. Inadequate activity (3-5 year, overall time of activity, OR 0.82 [0.73-0.92]), drowsiness (3-5 year, sleep duration, OR 1.13 [1.04-1.24]) and weight loss (0-5 year, weight, OR 0.9 [0.83-0.98]) only exhibited associations within five years before the diagnosis. In addition, serum biomarkers of enriched endocrine, dysregulations of ketones, deficiency of brand-chain amino acids and polyunsaturated fatty acids were found in a similar prodromal time window and can be witnessed as the last pre-symptomatic conditions before the diagnosis. INTERPRETATION: Our findings present a comprehensive temporal-diagnostic landscape preceding incident dementia, which could improve selection for preventive and early disease-modifying treatment trials.


Asunto(s)
Demencia , Progresión de la Enfermedad , Síntomas Prodrómicos , Humanos , Masculino , Femenino , Demencia/epidemiología , Demencia/diagnóstico , Anciano , Estudios Prospectivos , Persona de Mediana Edad , Estudios Longitudinales , Reino Unido/epidemiología , Estudios de Cohortes , Anciano de 80 o más Años , Fuerza de la Mano/fisiología , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/fisiopatología , Factores de Riesgo
4.
Mol Psychiatry ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215183

RESUMEN

Educational attainment (EA), socioeconomic status (SES) and cognition are phenotypically and genetically linked to health outcomes. However, the role of copy number variations (CNVs) in influencing EA/SES/cognition remains unclear. Using a large-scale (n = 305,401) genome-wide CNV-level association analysis, we discovered 33 CNV loci significantly associated with EA/SES/cognition, 20 of which were novel (deletions at 2p22.2, 2p16.2, 2p12, 3p25.3, 4p15.2, 5p15.33, 5q21.1, 8p21.3, 9p21.1, 11p14.3, 13q12.13, 17q21.31, and 20q13.33, as well as duplications at 3q12.2, 3q23, 7p22.3, 8p23.1, 8p23.2, 17q12 (105 kb), and 19q13.32). The genes identified in gene-level tests were enriched in biological pathways such as neurodegeneration, telomere maintenance and axon guidance. Phenome-wide association studies further identified novel associations of EA/SES/cognition-associated CNVs with mental and physical diseases, such as 6q27 duplication with upper respiratory disease and 17q12 (105 kb) duplication with mood disorders. Our findings provide a genome-wide CNV profile for EA/SES/cognition and bridge their connections to health. The expanded candidate CNVs database and the residing genes would be a valuable resource for future studies aimed at uncovering the biological mechanisms underlying cognitive function and related clinical phenotypes.

5.
Mol Psychiatry ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39472661

RESUMEN

Previous genome-wide association studies of depression have primarily focused on common variants, limiting our comprehensive understanding of the genetic architecture. In contrast, whole-exome sequencing can capture rare coding variants, helping to explore the phenotypic consequences of altering protein-coding genes. Here, we conducted a large-scale exome-wide association study on 296,199 participants from the UK Biobank, assessing their depressive symptom scores through the Patient Health Questionnaire-4. We identified 22 genes associated with depressive symptoms, including 6 newly discovered genes (TRIM27, UBD, SVOP, ADGRB2, IRF2BPL, and ANKRD12). Both ontology enrichment analysis and plasma proteomics association analysis consistently revealed that the identified genes were associated with immune responses. Furthermore, we identified associations between these genes and brain regions related to depression, such as anterior cingulate cortex and orbitofrontal cortex. Additionally, phenome-wide association analysis demonstrated that TRIM27 and UBD were associated with neuropsychiatric, cognitive, biochemistry, and inflammatory traits. Our findings offer new insights into the potential mechanisms and genetic architecture of depressive symptoms.

6.
PLoS Biol ; 20(3): e3001560, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35298460

RESUMEN

Hemispheric lateralization constitutes a core architectural principle of human brain organization underlying cognition, often argued to represent a stable, trait-like feature. However, emerging evidence underlines the inherently dynamic nature of brain networks, in which time-resolved alterations in functional lateralization remain uncharted. Integrating dynamic network approaches with the concept of hemispheric laterality, we map the spatiotemporal architecture of whole-brain lateralization in a large sample of high-quality resting-state fMRI data (N = 991, Human Connectome Project). We reveal distinct laterality dynamics across lower-order sensorimotor systems and higher-order associative networks. Specifically, we expose 2 aspects of the laterality dynamics: laterality fluctuations (LF), defined as the standard deviation of laterality time series, and laterality reversal (LR), referring to the number of zero crossings in laterality time series. These 2 measures are associated with moderate and extreme changes in laterality over time, respectively. While LF depict positive association with language function and cognitive flexibility, LR shows a negative association with the same cognitive abilities. These opposing interactions indicate a dynamic balance between intra and interhemispheric communication, i.e., segregation and integration of information across hemispheres. Furthermore, in their time-resolved laterality index, the default mode and language networks correlate negatively with visual/sensorimotor and attention networks, which are linked to better cognitive abilities. Finally, the laterality dynamics are associated with functional connectivity changes of higher-order brain networks and correlate with regional metabolism and structural connectivity. Our results provide insights into the adaptive nature of the lateralized brain and new perspectives for future studies of human cognition, genetics, and brain disorders.


Asunto(s)
Encéfalo , Conectoma , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cognición , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética/métodos
7.
PLoS Comput Biol ; 20(9): e1012401, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226329

RESUMEN

Neural activity in the cortex exhibits a wide range of firing variability and rich correlation structures. Studies on neural coding indicate that correlated neural variability can influence the quality of neural codes, either beneficially or adversely. However, the mechanisms by which correlated neural variability is transformed and processed across neural populations to achieve meaningful computation remain largely unclear. Here we propose a theory of covariance computation with spiking neurons which offers a unifying perspective on neural representation and computation with correlated noise. We employ a recently proposed computational framework known as the moment neural network to resolve the nonlinear coupling of correlated neural variability with a task-driven approach to constructing neural network models for performing covariance-based perceptual tasks. In particular, we demonstrate how perceptual information initially encoded entirely within the covariance of upstream neurons' spiking activity can be passed, in a near-lossless manner, to the mean firing rate of downstream neurons, which in turn can be used to inform inference. The proposed theory of covariance computation addresses an important question of how the brain extracts perceptual information from noisy sensory stimuli to generate a stable perceptual whole and indicates a more direct role that correlated variability plays in cortical information processing.


Asunto(s)
Potenciales de Acción , Biología Computacional , Modelos Neurológicos , Neuronas , Neuronas/fisiología , Humanos , Potenciales de Acción/fisiología , Redes Neurales de la Computación , Red Nerviosa/fisiología , Aprendizaje/fisiología , Animales , Simulación por Computador , Encéfalo/fisiología
8.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37991264

RESUMEN

The frontal pole is implicated in humans in whether to exploit resources versus explore alternatives. Effective connectivity, functional connectivity, and tractography were measured between six human frontal pole regions and for comparison 13 dorsolateral and dorsal prefrontal cortex regions, and the 360 cortical regions in the Human Connectome Project Multi-modal-parcellation atlas in 171 HCP participants. The frontal pole regions have effective connectivity with Dorsolateral Prefrontal Cortex regions, the Dorsal Prefrontal Cortex, both implicated in working memory; and with the orbitofrontal and anterior cingulate cortex reward/non-reward system. There is also connectivity with temporal lobe, inferior parietal, and posterior cingulate regions. Given this new connectivity evidence, and evidence from activations and damage, it is proposed that the frontal pole cortex contains autoassociation attractor networks that are normally stable in a short-term memory state, and maintain stability in the other prefrontal networks during stable exploitation of goals and strategies. However, if an input from the orbitofrontal or anterior cingulate cortex that expected reward, non-reward, or punishment is received, this destabilizes the frontal pole and thereby other prefrontal networks to enable exploration of competing alternative goals and strategies. The frontal pole connectivity with reward systems may be key in exploit versus explore.


Asunto(s)
Conectoma , Lóbulo Parietal , Humanos , Imagen por Resonancia Magnética , Lóbulo Frontal/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Lóbulo Temporal
9.
J Neurochem ; 168(1): 26-38, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37830502

RESUMEN

The relationship between liver dysfunction and dementia has been researched extensively but remains poorly understood. In this study, we investigate the longitudinal and cross-sectional associations between liver function and liver diseases and risk of incident dementia, impaired cognition, and brain structure abnormalities using Cox proportion hazard model and linear regression model. 431 699 participants with a mean of 8.65 (standard deviation [SD] 2.61) years of follow-up were included from the UK Biobank; 5542 all-cause dementia (ACD), 2427 Alzheimer's disease (AD), and 1282 vascular dementia (VaD) cases were documented. We observed that per SD decreases in alanine transaminase (ALT; hazard ratio [HR], 0.917; PFDR <0.001) and per SD increases in aspartate aminotransferase (AST; HR, 1.048; PFDR = 0.010), AST to ALT ratio (HR, 1.195; PFDR <0.001), gamma-glutamyl transpeptidase (GGT; HR, 1.066; PFDR <0.001), alcoholic liver disease (ALD; HR, 2.872; PFDR <0.001), and fibrosis and cirrhosis of liver (HR, 2.285; PFDR = 0.002), being significantly associated with a higher risk of incident ACD. Restricted cubic spline models identified a strong U-shaped association between Alb and AST and incident ACD (Pnonlinear <0.05). Worse cognition was positively correlated with AST, AST to ALT ratio, direct bilirubin (DBil), and GGT; negatively correlated with ALT, Alb, and total bilirubin (TBil); and ALD and fibrosis and cirrhosis of liver (PFDR <0.05). Moreover, changes in ALT, GGT, AST to ALT ratio, and ALD were significantly associated with altered cortical and subcortical regions, including hippocampus, amygdala, thalamus, pallidum, and fusiform (PFDR <0.05). In sensitivity analysis, metabolic dysfunction-associated steatotic liver disease (MASLD) was associated with the risk of ACD and brain subcortical changes. Our findings provide substantial evidence that liver dysfunction may be an important factor for incident dementia. Early intervention in the unhealthy liver may help prevent cognitive impairment and dementia incidence.


Asunto(s)
Demencia , Hepatopatías , Adulto , Humanos , Estudios Prospectivos , Estudios Transversales , Hepatopatías/epidemiología , Hígado , Cognición , Bilirrubina , Encéfalo , Cirrosis Hepática , Demencia/epidemiología , Aspartato Aminotransferasas
10.
Neurobiol Dis ; 194: 106472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479482

RESUMEN

BACKGROUND: Whether there is hypothalamic degeneration in Parkinson's disease (PD) and its association with clinical symptoms and pathophysiological changes remains controversial. OBJECTIVES: We aimed to quantify microstructural changes in hypothalamus using a novel deep learning-based tool in patients with PD and those with probable rapid-eye-movement sleep behavior disorder (pRBD). We further assessed whether these microstructural changes associated with clinical symptoms and free thyroxine (FT4) levels. METHODS: This study included 186 PD, 67 pRBD, and 179 healthy controls. Multi-shell diffusion MRI were scanned and mean kurtosis (MK) in hypothalamic subunits were calculated. Participants were assessed using Unified Parkinson's Disease Rating Scale (UPDRS), RBD Questionnaire-Hong Kong (RBDQ-HK), Hamilton Depression Rating Scale (HAMD), and Activity of Daily Living (ADL) Scale. Additionally, a subgroup of PD (n = 31) underwent assessment of FT4. RESULTS: PD showed significant decreases of MK in anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tubular (supTub), and inferior tubular hypothalamus when compared with healthy controls. Similarly, pRBD exhibited decreases of MK in a-iHyp and supTub. In PD group, MK in above four subunits were significantly correlated with UPDRS-I, HAMD, and ADL. Moreover, MK in a-iHyp and a-sHyp were significantly correlated with FT4 level. In pRBD group, correlations were observed between MK in a-iHyp and UPDRS-I. CONCLUSIONS: Our study reveals that microstructural changes in the hypothalamus are already significant at the early neurodegenerative stage. These changes are associated with emotional alterations, daily activity levels, and thyroid hormone levels.


Asunto(s)
Enfermedad de Parkinson , Pindolol/análogos & derivados , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Parkinson/complicaciones , Encuestas y Cuestionarios
11.
Hippocampus ; 34(11): 608-624, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39221708

RESUMEN

A key question for understanding the function of the hippocampus in memory is how information is recalled from the hippocampus to the neocortex. This was investigated in a neuronal network model of the hippocampal system in which "What" and "Where" neuronal firing rate vectors were applied to separate neocortical modules, which then activated entorhinal cortex "What" and "Where" modules, then the dentate gyrus, then CA3, then CA1, then the entorhinal cortex, and then the backprojections to the neocortex. A rate model showed that the whole system could be trained to recall "Where" in the neocortex from "What" applied as a retrieval cue to the neocortex, and could in principle be trained up towards the theoretical capacity determined largely by the number of synapses onto any one neuron divided by the sparseness of the representation. The trained synaptic weights were then imported into an integrate-and-fire simulation of the same architecture, which showed that the time from presenting a retrieval cue to a neocortex module to recall the whole memory in the neocortex is approximately 100 ms. This is sufficiently fast for the backprojection synapses to be trained onto the still active neocortical neurons during storage of the episodic memory, and this is needed for recall to operate correctly to the neocortex. These simulations also showed that the long loop neocortex-hippocampus-neocortex that operates continuously in time may contribute to complete recall in the neocortex; but that this positive feedback long loop makes the whole dynamical system inherently liable to a pathological increase in neuronal activity. Important factors that contributed to stability included increased inhibition in CA3 and CA1 to keep the firing rates low; and temporal adaptation of the neuronal firing and of active synapses, which are proposed to make an important contribution to stabilizing runaway excitation in cortical circuits in the brain.


Asunto(s)
Hipocampo , Recuerdo Mental , Modelos Neurológicos , Neocórtex , Neocórtex/fisiología , Hipocampo/fisiología , Recuerdo Mental/fisiología , Animales , Neuronas/fisiología , Humanos , Vías Nerviosas/fisiología , Simulación por Computador , Potenciales de Acción/fisiología , Sinapsis/fisiología , Redes Neurales de la Computación , Corteza Entorrinal/fisiología
12.
Hum Brain Mapp ; 45(15): e70056, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39436048

RESUMEN

Different cortical systems to the hippocampus were activated using fMRI during different types of episodic memory task. For object with scene location episodic memory, the activations were high in cortical systems involved in spatial processing, including the ventromedial visual and medial parahippocampal system. These activations for the medial parahippocampal system were higher in the right hemisphere. The activations in the face and object processing ventrolateral visual cortical stream regions FFC, PIT, V8 and TE2p were higher in the object-location in scene task than the reward-location task, and were higher in the right hemisphere. For reward-location in scene episodic memory, activations were also high in the ventromedial visual cortical spatial stream to the hippocampus, but were also selectively high in storage in key reward cortical regions (ventromedial prefrontal 10r, 10v, 10d; pregenual anterior cingulate d32, p24, p32, s32; and medial orbitofrontal cortex reward-related pOFC, 11l, OFC). For word-pair episodic memory, activations were lower in the ventromedial visual and medial parahippocampal spatial cortical stream, and were higher in language-related regions in Broca's area (44, 45, 47l), and were higher in the left hemisphere for these regions and for the many highly connected inferior frontal gyrus regions in the left hemisphere. Further, effective connectivity analyses during the episodic memory tasks showed that the direction of connectivity for these systems was from early visual cortical regions V2-V4 to the ventromedial visual cortical regions VMV1-3 and VVC for spatial scene processing; was from the pregenual anterior cingulate and orbitofrontal cortex reward systems to the hippocampal system; and was from the FFC/V8/PIT system to TE2p in the visual inferior temporal visual cortex, which has connectivity to lateral parahippocampal TF, which in turn has forward effective connectivity to the hippocampus.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Memoria Episódica , Recuerdo Mental , Recompensa , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Recuerdo Mental/fisiología , Conectoma , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
13.
Hum Brain Mapp ; 45(4): e26601, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488475

RESUMEN

Neuroimaging data have been widely used to understand the neural bases of human behaviors. However, most studies were either based on a few predefined regions of interest or only able to reveal limited vital regions, hence not providing an overarching description of the relationship between neuroimaging and behaviors. Here, we proposed a voxel-based pattern regression that not only could investigate the overall brain-associated variance (BAV) for a given behavioral measure but could also evaluate the shared neural bases between different behaviors across multiple neuroimaging data. The proposed method demonstrated consistently high reliability and accuracy through comprehensive simulations. We further implemented this approach on real data of adolescents (IMAGEN project, n = 2089) and adults (HCP project, n = 808) to investigate brain-based variances of multiple behavioral measures, for instance, cognitive behaviors, substance use, and psychiatric disorders. Notably, intelligence-related scores showed similar high BAVs with the gray matter volume across both datasets. Further, our approach allows us to reveal the latent brain-based correlation across multiple behavioral measures, which are challenging to obtain otherwise. For instance, we observed a shared brain architecture underlying depression and externalizing problems in adolescents, while the symptom comorbidity may only emerge later in adults. Overall, our approach will provide an important statistical tool for understanding human behaviors using neuroimaging data.


Asunto(s)
Neuroimagen , Trastornos Relacionados con Sustancias , Adulto , Adolescente , Humanos , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética
14.
Hum Brain Mapp ; 45(1): e26560, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224536

RESUMEN

OBJECTIVES: White matter hyperintensities (WMH) increase the risk of stroke and cognitive impairment. This study aims to determine the cross-sectional and longitudinal associations between adiposity and WMH. METHODS: Participants were enrolled from the UK Biobank cohort. Associations of concurrent, past, and changes in overall and central adiposity with WMH were investigated by linear and nonlinear regression models. The association of longitudinal adiposity and WMH volume changes was determined by a linear mixed model. Mediation analysis investigated the potential mediating effect of blood pressure. RESULTS: In 34,653 participants with available adiposity measures and imaging data, the concurrent obese group had a 25.3% (ß [95% CI] = 0.253 [0.222-0.284]) higher WMH volume than the ideal weight group. Increment in all adiposity measures was associated with a higher WMH volume. Among them, waist circumference demonstrated the strongest effect (ß [95% CI] = 0.113 [0.101-0.125]). Past adiposity also demonstrated similar effects. Among the subset of 2664 participants with available WMH follow-up data, adiposity measures were predictive of WMH change. Regarding changes of adiposity, compared with ideal weight stable group, those who turned from ideal weight to overweight/obese had a 8.1% higher WMH volume (ß [95% CI] = 0.081 [0.039-0.123]), while participants who turned from overweight/obese to ideal weight demonstrated no significant WMH volume change. Blood pressure partly meditates the associations between adiposity and WMH. CONCLUSIONS: Both concurrent and past adiposity were associated with a higher WMH volume. The detrimental effects of adiposity on WMH occurred throughout midlife and in the elderly and may still exist after changes in obesity status.


Asunto(s)
Sustancia Blanca , Humanos , Anciano , Sustancia Blanca/diagnóstico por imagen , Adiposidad , Sobrepeso/diagnóstico por imagen , Estudios Transversales , Imagen por Resonancia Magnética , Obesidad/diagnóstico por imagen
15.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35780382

RESUMEN

Exploring multimorbidity relationships among diseases is of great importance for understanding their shared mechanisms, precise diagnosis and treatment. However, the landscape of multimorbidities is still far from complete due to the complex nature of multimorbidity. Although various types of biological data, such as biomolecules and clinical symptoms, have been used to identify multimorbidities, the population phenotype information (e.g. physical activity and diet) remains less explored for multimorbidity. Here, we present a graph convolutional network (GCN) model, named MorbidGCN, for multimorbidity prediction by integrating population phenotypes and disease network. Specifically, MorbidGCN treats the multimorbidity prediction as a missing link prediction problem in the disease network, where a novel feature selection method is embedded to select important phenotypes. Benchmarking results on two large-scale multimorbidity data sets, i.e. the UK Biobank (UKB) and Human Disease Network (HuDiNe) data sets, demonstrate that MorbidGCN outperforms other competitive methods. With MorbidGCN, 9742 and 14 010 novel multimorbidities are identified in the UKB and HuDiNe data sets, respectively. Moreover, we notice that the selected phenotypes that are generally differentially distributed between multimorbidity patients and single-disease patients can help interpret multimorbidities and show potential for prognosis of multimorbidities.


Asunto(s)
Multimorbilidad , Humanos , Fenotipo
16.
Br J Psychiatry ; 225(2): 299-301, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39308237

RESUMEN

We emphasise the existence of two distinct neurophysiological subtypes in schizophrenia, characterised by different sites of initial grey matter loss. We review evidence for potential neuromolecular mechanisms underlying these subtypes, proposing a biologically based disease classification approach to unify macro- and micro-scale neural abnormalities of schizophrenia.


Asunto(s)
Esquizofrenia , Humanos , Encéfalo/fisiopatología , Encéfalo/patología , Sustancia Gris/patología , Esquizofrenia/clasificación , Esquizofrenia/etiología , Esquizofrenia/fisiopatología
17.
Psychol Med ; 54(2): 359-373, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37376848

RESUMEN

BACKGROUND: Childhood is a crucial neurodevelopmental period. We investigated whether childhood reading for pleasure (RfP) was related to young adolescent assessments of cognition, mental health, and brain structure. METHODS: We conducted a cross-sectional and longitudinal study in a large-scale US national cohort (10 000 + young adolescents), using the well-established linear mixed model and structural equation methods for twin study, longitudinal and mediation analyses. A 2-sample Mendelian randomization (MR) analysis for potential causal inference was also performed. Important factors including socio-economic status were controlled. RESULTS: Early-initiated long-standing childhood RfP (early RfP) was highly positively correlated with performance on cognitive tests and significantly negatively correlated with mental health problem scores of young adolescents. These participants with higher early RfP scores exhibited moderately larger total brain cortical areas and volumes, with increased regions including the temporal, frontal, insula, supramarginal; left angular, para-hippocampal; right middle-occipital, anterior-cingulate, orbital areas; and subcortical ventral-diencephalon and thalamus. These brain structures were significantly related to their cognitive and mental health scores, and displayed significant mediation effects. Early RfP was longitudinally associated with higher crystallized cognition and lower attention symptoms at follow-up. Approximately 12 h/week of youth regular RfP was cognitively optimal. We further observed a moderately significant heritability of early RfP, with considerable contribution from environments. MR analysis revealed beneficial causal associations of early RfP with adult cognitive performance and left superior temporal structure. CONCLUSIONS: These findings, for the first time, revealed the important relationships of early RfP with subsequent brain and cognitive development and mental well-being.


Asunto(s)
Salud Mental , Placer , Adulto , Adolescente , Humanos , Niño , Estudios Longitudinales , Estudios Transversales , Lectura , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Cognición
18.
Mol Psychiatry ; 28(3): 1146-1158, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473996

RESUMEN

Preadolescence is a critical period characterized by dramatic morphological changes and accelerated cortico-subcortical development. Moreover, the coordinated development of cortical and subcortical regions underlies the emerging cognitive functions during this period. Deviations in this maturational coordination may underlie various psychiatric disorders that begin during preadolescence, but to date these deviations remain largely uncharted. We constructed a comprehensive whole-brain morphometric similarity network (MSN) from 17 neuroimaging modalities in a large preadolescence sample (N = 8908) from Adolescent Brain Cognitive Development (ABCD) study and investigated its association with 10 cognitive subscales and 27 psychiatric subscales or diagnoses. Based on the MSNs, each brain was clustered into five modules with distinct cytoarchitecture and evolutionary relevance. While morphometric correlation was positive within modules, it was negative between modules, especially between isocortical and paralimbic/subcortical modules; this developmental dissimilarity was genetically linked to synapse and neurogenesis. The cortico-subcortical dissimilarity becomes more pronounced longitudinally in healthy children, reflecting developmental differentiation of segregated cytoarchitectonic areas. Higher cortico-subcortical dissimilarity (between the isocortical and paralimbic/subcortical modules) were related to better cognitive performance. In comparison, children with poor modular differentiation between cortex and subcortex displayed higher burden of externalizing and internalizing symptoms. These results highlighted cortical-subcortical morphometric dissimilarity as a dynamic maturational marker of cognitive and psychiatric status during the preadolescent stage and provided insights into brain development.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Mentales , Niño , Adolescente , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo , Cognición , Neuroimagen
19.
PLoS Comput Biol ; 19(9): e1011446, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37669311

RESUMEN

Understanding the underlying dynamical mechanisms of the brain and controlling it is a crucial issue in brain science. The energy landscape and transition path approach provides a possible route to address these challenges. Here, taking working memory as an example, we quantified its landscape based on a large-scale macaque model. The working memory function is governed by the change of landscape and brain-wide state switching in response to the task demands. The kinetic transition path reveals that information flow follows the direction of hierarchical structure. Importantly, we propose a landscape control approach to manipulate brain state transition by modulating external stimulation or inter-areal connectivity, demonstrating the crucial roles of associative areas, especially prefrontal and parietal cortical areas in working memory performance. Our findings provide new insights into the dynamical mechanism of cognitive function, and the landscape control approach helps to develop therapeutic strategies for brain disorders.


Asunto(s)
Encefalopatías , Memoria a Corto Plazo , Animales , Encéfalo , Cognición , Cinética , Macaca
20.
Environ Sci Technol ; 58(8): 3714-3725, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38350648

RESUMEN

Chemicals mainly exist in ecosystems as mixtures, and understanding and predicting their effects are major challenges in ecotoxicology. While the adverse outcome pathway (AOP) and toxicokinetic-toxicodynamic (TK-TD) models show promise as mechanistic approaches in chemical risk assessment, there is still a lack of methodology to incorporate the AOP into a TK-TD model. Here, we describe a novel approach that integrates the AOP and TK-TD models to predict mixture toxicity using metal mixtures (specifically Cd-Cu) as a case study. We preliminarily constructed an AOP of the metal mixture through temporal transcriptome analysis together with confirmatory bioassays. The AOP revealed that prolonged exposure time activated more key events and adverse outcomes, indicating different modes of action over time. We selected a potential key event as a proxy for damage and used it as a measurable parameter to replace the theoretical parameter (scaled damage) in the TK-TD model. This refined model, which connects molecular responses to organism outcomes, effectively predicts Cd-Cu mixture toxicity over time and can be extended to other metal mixtures and even multicomponent mixtures. Overall, our results contribute to a better understanding of metal mixture toxicity and provide insights for integrating the AOP and TK-TD models to improve risk assessment for chemical mixtures.


Asunto(s)
Rutas de Resultados Adversos , Animales , Cadmio/toxicidad , Modelos Biológicos , Toxicocinética , Ecosistema , Pez Cebra , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA