Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Entropy (Basel) ; 25(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36673296

RESUMEN

Noise exists inherently in realistic quantum systems and affects the evolution of quantum systems. We investigate the dynamics of quantum networks in noisy environments by using the fidelity of the quantum evolved states and the classical percolation theory. We propose an analytical framework that allows us to characterize the stability of quantum networks in terms of quantum noises and network topologies. The calculation results of the framework determine the maximal time that quantum networks with different network topologies can maintain the ability to communicate under noise. We demonstrate the results of the framework through examples of specific graphs under amplitude damping and phase damping noises. We further consider the capacity of the quantum network in a noisy environment according to the proposed framework. The analytical framework helps us better understand the evolution time of a quantum network and provides a reference for designing large quantum networks.

2.
Entropy (Basel) ; 24(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35741534

RESUMEN

Information thermodynamics has developed rapidly over past years, and the trapped ions, as a controllable quantum system, have demonstrated feasibility to experimentally verify the theoretical predictions in the information thermodynamics. Here, we address some representative theories of information thermodynamics, such as the quantum Landauer principle, information equality based on the two-point measurement, information-theoretical bound of irreversibility, and speed limit restrained by the entropy production of system, and review their experimental demonstration in the trapped ion system. In these schemes, the typical physical processes, such as the entropy flow, energy transfer, and information flow, build the connection between thermodynamic processes and information variation. We then elucidate the concrete quantum control strategies to simulate these processes by using quantum operators and the decay paths in the trapped-ion system. Based on them, some significantly dynamical processes in the trapped ion system to realize the newly proposed information-thermodynamic models is reviewed. Although only some latest experimental results of information thermodynamics with a single trapped-ion quantum system are reviewed here, we expect to find more exploration in the future with more ions involved in the experimental systems.

3.
Opt Lett ; 45(3): 665, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004279

RESUMEN

This publisher's note contains corrections to Opt. Lett.44, 2081 (2019)OPLEDP0146-959210.1364/OL.44.002081.

4.
Opt Express ; 27(2): 377-390, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30696125

RESUMEN

Large optical nonlinearities can create fancy physics, such as big Schrödinger-cat states and quadrature squeezing. We present the possibility to practically generate macroscopic Schrödinger-cat states, based on a giant Kerr nonlinearity, in a diamond nitrogen-vacancy ensemble interacting with two coupled flux-qubits. The nonlinearity comes from a four-level N-type configuration formed by two coupled flux-qubits under the appropriately driving fields. We discuss the experimental feasibility in the presence of system dissipations using current laboratory technology and our scheme can be easily extended to other ensemble systems.

5.
Opt Lett ; 44(8): 2081-2084, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30985816

RESUMEN

Detecting optical signatures of quantum phase transitions (QPT) in driven-dissipative systems constitutes a new frontier for many-body physics. Here we propose a practical idea to characterize the extensively studied phenomenon of photonic QPT, based on a many-body system composed of nitrogen-vacancy centers embedded individually in photonic crystal cavities, by detecting the critical behaviors of mean photon number, photon fluctuation, photon correlation, and emitted spectrum. Our results bridge these observables to the distinct optical signatures in different quantum phases and serve as good indicators and invaluable tools for studying dynamical properties of dissipative QPT.

6.
Opt Express ; 26(16): 20459-20470, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30119356

RESUMEN

Stationary quantum correlation among two-level systems (TLSs) in steady state is one of unique resources for applications in quantum information processing. Here we propose a scheme to generate such quantum correlation among the TLSs inside a lossy cavity. It is found that, by applying a broadband squeezed laser acting as a squeezed-vacuum reservoir to the cavity, a stable quantum correlation of the TLSs can be generated. By adiabatically eliminating the cavity field, we derive a reduced master equation of the TLSs in the bad-cavity limit. We show that the generated quantum correlation is essentially determined by the squeezing features transferred from the squeezed-vacuum reservoir via the cavity field as a quantum bus. We study the effect of the system parameters, such as the squeezing, the detuning, the coupling strength, and the decay rate of the TLSs, on the performance of the scheme. The feasibility of our proposal is supported by the application of currently available experimental techniques.

7.
Opt Express ; 25(16): 19226-19235, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29041116

RESUMEN

Spin squeezing has received much attention due to the interesting physics and important applications such as quantum metrology and quantum information processing. We here present a scheme to engineer stable spin squeezing in an array of nitrogen vacancy centers (NVCs) coupled to a rectangular hollow metallic waveguide. The remarkable feature of the waveguide as the common environment media is that one can switch on/off either the waveguide induced dipole-dipole interactions or correlated spontaneous emissions among the NVCs by designing their spatial separation. It permits us to achieve a dissipative Dicke model after the dipole-dipole interactions vanish due to destructive interference. With the external driving lasers on each NVC, a second-order phase transition is triggered, separating the steady state into two phases with and without collective spin squeezing. Supplying a physical realization of the dissipative Dicke model, our study gives a bridge between the generation of the stable spin squeezing and the phase transition physics.

8.
Opt Express ; 23(11): 13734-51, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072746

RESUMEN

The solid-state qubits based on diamond nitrogen-vacancy centers (NVC) are promising for future quantum information processing. We investigate the dynamics of entanglement among three NVCs coupled to a microtoroidal cavity supporting two counter-propagating whispering-gallery-modes (WGMs) in the presence of Rayleigh scattering. Our results indicate that the maximal entanglement among all the NVCs could be achieved through adjusting several key parameters, such as the scattering-induced coupling between the WGMs, the distance between the NVCs, and the NVC-WGM coupling strengths, as well as the frequency detuning between the NVC and cavity. We show that entanglement of the NVCs displays a series of damped oscillations under various experimental situations, which reflects the intricate interplay and competition between the Rayleigh scattering and the NVC-WGM coupling. The quantum dynamics of the system is obtained via solutions to the corresponding microscopic master equation, which agrees well with the numerical simulation results using the phenomenological master equation. The feasibility of our proposal is supported by the application of currently available experimental techniques.

9.
Opt Express ; 23(14): 18534-47, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26191912

RESUMEN

In contrast to the optomechanically induced transparency (OMIT) defined conventionally, the inverse OMIT behaves as coherent absorption of the input lights in the optomechanical systems. We characterize a feasible inverse OMIT in a multi-channel fashion with a double-sided optomechanical cavity system coupled to a nearby charged nanomechanical resonator via Coulomb interaction, where two counter-propagating probe lights can be absorbed via one of the channels or even via three channels simultaneously with the assistance of a strong pump light. Under realistic conditions, we demonstrate the experimental feasibility of our model by considering two slightly different nanomechanical resonators and the possibility of detecting the energy dissipation of the system. In particular, we find that our model turns to be a unilateral inverse OMIT once the two probe lights are different with a relative phase, and in this case the relative phase can be detected precisely.

10.
Light Sci Appl ; 13(1): 143, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918396

RESUMEN

Quantum heat engines and refrigerators are open quantum systems, whose dynamics can be well understood using a non-Hermitian formalism. A prominent feature of non-Hermiticity is the existence of exceptional points (EPs), which has no counterpart in closed quantum systems. It has been shown in classical systems that dynamical encirclement in the vicinity of an EP, whether the loop includes the EP or not, could lead to chiral mode conversion. Here, we show that this is valid also for quantum systems when dynamical encircling is performed in the vicinity of their Liouvillian EPs (LEPs), which include the effects of quantum jumps and associated noise-an important quantum feature not present in previous works. We demonstrate, using a Paul-trapped ultracold ion, the first chiral quantum heating and refrigeration by dynamically encircling a closed loop in the vicinity of an LEP. We witness the cycling direction to be associated with the chirality and heat release (absorption) of the quantum heat engine (quantum refrigerator). Our experiments have revealed that not only the adiabaticity breakdown but also the Landau-Zener-Stückelberg process play an essential role during dynamic encircling, resulting in chiral thermodynamic cycles. Our observations contribute to further understanding of chiral and topological features in non-Hermitian systems and pave a way to exploring the relation between chirality and quantum thermodynamics.

11.
Opt Express ; 21(24): 29695-710, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24514521

RESUMEN

We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions.


Asunto(s)
Congelación , Sistemas Microelectromecánicos/instrumentación , Nanotecnología/instrumentación , Nitrógeno/química , Refractometría/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
12.
IEEE Trans Med Imaging ; 42(6): 1846-1858, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022268

RESUMEN

Photon counting detector (PCD)-CT has demonstrated promise to reduce ionizing radiation exposure further and improve spatial resolution. However, when the radiation exposure or the detector pixel size is reduced, image noise is elevated, and the CT number becomes more inaccurate. This exposure level-dependent CT number inaccuracy is referred to as statistical bias. The issue of CT number statistical bias is rooted in the stochastic nature of the detected photon number, N, and a log transformation used to generate the sinogram projection data. Due to the nonlinear nature of the log transform, the statistical mean of the log-transformed data is different from the desired sinogram, the log transform of the statistical mean of N. Consequently, when a single instance of N is measured, as in clinical imaging, the log-transform leads to an inaccurate sinogram and statistically biased CT numbers after reconstruction. This work presents a nearly unbiased and closed-form statistical estimator of sinogram as a simple yet highly effective method to address the statistical bias issue in PCD-CT. Experimental results validated that the proposed approach addresses the CT number bias problem and improves the quantification accuracy of both non-spectral and spectral PCD-CT images. Additionally, the process can slightly reduce noise without adaptive filtering or iterative reconstruction.


Asunto(s)
Fotones , Tomografía Computarizada por Rayos X , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos
13.
IEEE Trans Nanobioscience ; 21(2): 286-293, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34822331

RESUMEN

In this paper, we propose a bio-molecular algorithm with O( n 2) biological operations, O( 2n-1 ) DNA strands, O( n ) tubes and the longest DNA strand, O( n ), for inferring the value of a bit from the only output satisfying any given condition in an unsorted database with 2n items of n bits. We show that the value of each bit of the outcome is determined by executing our bio-molecular algorithm n times. Then, we show how to view a bio-molecular solution space with 2n-1 DNA strands as an eigenvector and how to find the corresponding unitary operator and eigenvalues for inferring the value of a bit in the output. We also show that using an extension of the quantum phase estimation and quantum counting algorithms computes its unitary operator and eigenvalues from bio-molecular solution space with 2n-1 DNA strands. Next, we demonstrate that the value of each bit of the output solution can be determined by executing the proposed extended quantum algorithms n times. To verify our theorem, we find the maximum-sized clique to a graph with two vertices and one edge and the solution b that satisfies b2 ≡ 1 (mod 15) and using IBM Quantum's backend.


Asunto(s)
Algoritmos , Computadores , ADN/química , Bases de Datos Factuales
14.
Phys Med Biol ; 67(21)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36162399

RESUMEN

Objective.Existing clinical C-arm interventional systems use scintillator-based energy-integrating flat panel detectors (FPDs) to generate cone-beam CT (CBCT) images. Despite its volumetric coverage, FPD-CBCT does not provide sufficient low-contrast detectability desired for certain interventional procedures. The purpose of this work was to develop a C-arm photon counting detector (PCD) CT system with a step-and-shoot data acquisition method to further improve the tomographic imaging performance of interventional systems.Approach.As a proof-of-concept, a cadmium telluride-based 51 cm × 0.6 cm PCD was mounted in front of a FPD in an Artis Zee biplane system. A total of 10 C-arm sweeps (5 forward and 5 backward) were prescribed. A motorized patient table prototype was synchronized with the C-arm system such that it translates the object by a designated distance during the sub-second rest time in between gantry sweeps. To evaluate whether this multi-sweep step-and-shoot acquisition strategy can generate high-quality and volumetric PCD-CT images without geometric distortion artifacts, experiments were performed using physical phantoms, a human cadaver head, and anin vivoswine subject. Comparison with FPD-CT was made under matched narrow beam collimation and radiation dose conditions.Main results.Compared with FPD-CT images, PCD-CT images had lower noise and improved visualization of low-contrast lesion models, as well as improved visibility of small iodinated blood vessels. Fine structures were visualized more clearly by the PCD-CT than the highest-available resolution provided by FPD-CBCT and MDCT. No perceivable geometric distortion artifacts were observed in the multi-planar PCD-CT images.Significance.This work is the first demonstration of the feasibility of high-quality and multi-planar (volumetric) PCD-CT imaging with a rotating C-arm gantry.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Tomografía Computarizada por Rayos X , Tomografía Computarizada de Haz Cónico/métodos , Humanos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos
15.
IEEE Trans Med Imaging ; 40(12): 3674-3685, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34232872

RESUMEN

Modern interventional x-ray systems are often equipped with flat-panel detector-based cone-beam CT (FPD-CBCT) to provide tomographic, volumetric, and high spatial resolution imaging of interventional devices, iodinated vessels, and other objects. The purpose of this work was to bring an interchangeable strip photon-counting detector (PCD) to C-arm systems to supplement (instead of retiring) the existing FPD-CBCT with a high quality, spectral, and affordable PCD-CT imaging option. With minimal modification to the existing C-arm, a 51×0.6 cm2 PCD with a 0.75 mm CdTe layer, two energy thresholds, and 0.1 mm pixels was integrated with a Siemens Artis Zee interventional imaging system. The PCD can be translated in and out of the field-of-view to allow the system to switch between FPD and PCD-CT imaging modes. A dedicated phantom and a new algorithm were developed to calibrate the projection geometry of the narrow-beam PCD-CT system and correct the gantry wobbling-induced geometric distortion artifacts. In addition, a detector response calibration procedure was performed for each PCD pixel using materials with known radiological pathlengths to address concentric artifacts in PCD-CT images. Both phantom and human cadaver experiments were performed at a high gantry rotation speed and clinically relevant radiation dose level to evaluate the spectral and non-spectral imaging performance of the prototype system. Results show that the PCD-CT system has excellent image quality with negligible artifacts after the proposed corrections. Compared with FPD-CBCT images acquired at the same dose level, PCD-CT images demonstrated a 53% reduction in noise variance and additional quantitative imaging capability.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Tomografía Computarizada de Haz Cónico , Humanos , Fantasmas de Imagen , Telurio
16.
Phys Med Biol ; 66(17)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34315142

RESUMEN

Large-area photon counting detectors (PCDs) are usually built by tiling multiple semiconductor panels that often have slightly different spectral responses to input x-rays. As a result of this spectral inconsistency, experimental PCD-CT images of large, human-sized objects may show high-frequency ring artifacts and low-frequency band artifacts. Due to the much larger width of the bands compared with the rings, the concentric artifact problem in PCD-CT images of human-sized objects cannot be adequately addressed by conventional CT ring correction methods. This work presents an experimental method to correct the concentric artifacts in PCD-CT. The method is applicable to not only energy-discriminating PCDs with multiple bins but also PCDs with only a single threshold controller. Its principle is similar to the two-step beam hardening correction method, except that the proposed method uses pixel-specific polynomial functions to address the spectral inconsistency problem across the detector plane. The pixel-specific polynomial coefficients were experimentally calibrated using 15 acrylic sheets and 6 aluminum sheets of known thicknesses. The pixel-specific polynomial functions were used to convert the measured PCD-CT projection data to acrylic- and aluminum-equivalent thicknesses that are energy-independent. The proposed method was experimentally evaluated using a human cadaver head and multiple physical phantoms: two of them contain iodine and one phantom contains dual K-edge contrast materials (gadolinium and iodine). The results show that the proposed method can effectively remove the low-frequency concentric artifacts in PCD-CT images while reducing beam hardening artifacts. In contrast, the conventional CT ring correction algorithm did not adequately address the low-frequency band artifacts. Compared with the direct material decomposition-based correction method, the proposed method not only relaxes the requirement of multi-energy bins but also generates images with lower noise and fewer concentric artifacts.


Asunto(s)
Artefactos , Tomografía Computarizada por Rayos X , Algoritmos , Humanos , Fantasmas de Imagen , Fotones
17.
Phys Rev Lett ; 105(4): 040504, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20867828

RESUMEN

The nitrogen-vacancy defect center (N-V center) is a promising candidate for quantum information processing due to the possibility of coherent manipulation of individual spins in the absence of the cryogenic requirement. We report a room-temperature implementation of the Deutsch-Jozsa algorithm by encoding both a qubit and an auxiliary state in the electron spin of a single N-V center. By thus exploiting the specific S=1 character of the spin system, we demonstrate how even scarce quantum resources can be used for test-bed experiments on the way towards a large-scale quantum computing architecture.

18.
Phys Med Biol ; 64(7): 075013, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30884472

RESUMEN

The zero-frequency detective quantum efficiency (DQE), viz., DQE0, is defined as the ratio between output and input squared signal-to-noise ratio of an imaging system. In 1963, R. Shaw applied Fourier analysis to generalize DQE0 to the frequency-dependent DQE, i.e. DQE[Formula: see text]. Under conditions specified by Shaw, DQE[Formula: see text] is the same as DQE0 at k = 0. The experimental measurement of DQE[Formula: see text] involves the measurement of system modulation transfer function (MTF) and noise power spectrum (NPS). Although the measurement of MTF is straightforward, the experimental measurements of NPS[Formula: see text] encountered several challenges. As a result, some experimental methods may yield a nonphysical NPS value at k = 0, which makes the measured DQE(k)| k=0 deviate from the true zero-frequency DQE. This work presents new results from three aspects: 1) system drift is a significant error source when a large number of independent image acquisitions are involved in measuring NPS and DQE; 2) a cascaded systems analysis shows that the drift induces a global positive offset to the measured autocovariance function, and the offset is quantitatively related to the NPS error at k = 0; 3) based on the measured autocovariance data, drift-induced offset can be estimated, so that errors in the measured NPS(k)| k=0 and DQE(k)| k=0 can be corrected. Both numerical simulations with known ground truth for DQE0 and experimental studies were performed to validate the proposed measurement method. The results demonstrated that the method mitigates the undesirable influence of system drift in DQE(k)| k=0 and DQE0, allowing the measured values consistent with the classical definition of zero-frequency DQE.


Asunto(s)
Análisis de Fourier , Teoría Cuántica , Intensificación de Imagen Radiográfica/métodos , Proyectos de Investigación , Relación Señal-Ruido , Algoritmos , Humanos , Rayos X
19.
Artículo en Inglés | MEDLINE | ID: mdl-31105375

RESUMEN

In 1963, Shaw applied Fourier analysis to the zero-frequency DQE and developed the frequency-dependent DQE or DQE(k) and made it clear that DQE(k) is applicable to every frequency level within the system bandwidth, including the zero frequency. Over time, especially after entering the modern era of digital x-ray imaging, the experimental measurement methods of DQE(k) (particularly the measurements of the NPS which is an important element in DQE(k)) have evolved, and some measurement methods may generate nonphysical NPS and DQE results at k=0. As a result, an experimental DQE(k) curve is often cut off at certain low frequency above zero. This work presents a new experimental method to deal with two challenges: severe NPS(k=0) underestimation due to polynomial-based background detrending; severe NPS(k=0) overestimation due to the presence of faint but non-negligible system drift. Based on a theoretical analysis of the impact of drift to the measured autocovariance function, the error introduced by drift can be isolated, and corresponding correction can be applied to NPS(k=0). Both numerical simulation with known ground truth and experimental studies demonstrated that the proposed method enables accurate DQE(k=0) measurement.

20.
Phys Med Biol ; 64(18): 185015, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31315093

RESUMEN

While CTA is an established clinical gold standard for imaging large cerebral arteries and veins, an important challenge that currently remains for CTA is its limited performance in imaging small perforating arteries with diameters below 0.5 mm. The purpose of this work was to theoretically and experimentally study the potential benefits of using photon counting detector (PCD)-based CT (PCCT) to improve the performance of CTA in imaging these small arteries. In particular, the study focused on an important component of the CTA image package known as the maximum intensity projection (MIP) image. To help understand how the physical properties of a detector quantitatively influence the MIP image quality, a theoretical model on the statistical properties of MIP images was developed. After validating this model, it was used to explore the individual and joint contribution of the following detector properties to the MIP signal-to-noise ratio (SNR): inter-slice noise covariance, spatial resolution along the z direction, and native pixel pitch along z. The model demonstrated that superior slice sensitivity, reduced inter-slice noise correlation, and smaller native pixel pitch along z provided by PCDs lead to improved vessel SNR in MIP images. Finally, experiments were performed by scanning an anthropomorphic cerebral angiographic phantom using a benchtop PCCT system and a commercial MDCT system. The experimental MIP results consistently demonstrated that compared with MDCT, PCCT provides superior vessel conspicuity and reduced artifactual stenosis.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Angiografía Cerebral , Angiografía por Tomografía Computarizada , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada Multidetector , Fotones , Accidente Cerebrovascular/diagnóstico por imagen , Diseño de Equipo , Humanos , Modelos Estadísticos , Modelos Teóricos , Fantasmas de Imagen , Probabilidad , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA