Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 185(10): 1646-1660.e18, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35447073

RESUMEN

Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.


Asunto(s)
Marsupiales , Animales , Australia , Evolución Molecular , Especiación Genética , Genoma , Marsupiales/genética , Fenotipo , Filogenia
2.
Nature ; 629(8013): 851-860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38560995

RESUMEN

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Asunto(s)
Aves , Evolución Molecular , Genoma , Filogenia , Animales , Aves/genética , Aves/clasificación , Aves/anatomía & histología , Encéfalo/anatomía & histología , Extinción Biológica , Genoma/genética , Genómica , Densidad de Población , Masculino , Femenino
3.
Proc Natl Acad Sci U S A ; 121(15): e2319506121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557186

RESUMEN

Genomes are typically mosaics of regions with different evolutionary histories. When speciation events are closely spaced in time, recombination makes the regions sharing the same history small, and the evolutionary history changes rapidly as we move along the genome. When examining rapid radiations such as the early diversification of Neoaves 66 Mya, typically no consistent history is observed across segments exceeding kilobases of the genome. Here, we report an exception. We found that a 21-Mb region in avian genomes, mapped to chicken chromosome 4, shows an extremely strong and discordance-free signal for a history different from that of the inferred species tree. Such a strong discordance-free signal, indicative of suppressed recombination across many millions of base pairs, is not observed elsewhere in the genome for any deep avian relationships. Although long regions with suppressed recombination have been documented in recently diverged species, our results pertain to relationships dating circa 65 Mya. We provide evidence that this strong signal may be due to an ancient rearrangement that blocked recombination and remained polymorphic for several million years prior to fixation. We show that the presence of this region has misled previous phylogenomic efforts with lower taxon sampling, showing the interplay between taxon and locus sampling. We predict that similar ancient rearrangements may confound phylogenetic analyses in other clades, pointing to a need for new analytical models that incorporate the possibility of such events.


Asunto(s)
Evolución Biológica , Genoma , Animales , Filogenia , Genoma/genética , Aves , Recombinación Genética
4.
Nature ; 587(7833): 246-251, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177663

RESUMEN

New genome assemblies have been arriving at a rapidly increasing pace, thanks to decreases in sequencing costs and improvements in third-generation sequencing technologies1-3. For example, the number of vertebrate genome assemblies currently in the NCBI (National Center for Biotechnology Information) database4 increased by more than 50% to 1,485 assemblies in the year from July 2018 to July 2019. In addition to this influx of assemblies from different species, new human de novo assemblies5 are being produced, which enable the analysis of not only small polymorphisms, but also complex, large-scale structural differences between human individuals and haplotypes. This coming era and its unprecedented amount of data offer the opportunity to uncover many insights into genome evolution but also present challenges in how to adapt current analysis methods to meet the increased scale. Cactus6, a reference-free multiple genome alignment program, has been shown to be highly accurate, but the existing implementation scales poorly with increasing numbers of genomes, and struggles in regions of highly duplicated sequences. Here we describe progressive extensions to Cactus to create Progressive Cactus, which enables the reference-free alignment of tens to thousands of large vertebrate genomes while maintaining high alignment quality. We describe results from an alignment of more than 600 amniote genomes, which is to our knowledge the largest multiple vertebrate genome alignment created so far.


Asunto(s)
Genoma/genética , Genómica/métodos , Alineación de Secuencia/métodos , Programas Informáticos , Vertebrados/genética , Amnios , Animales , Simulación por Computador , Genómica/normas , Haplotipos , Humanos , Control de Calidad , Alineación de Secuencia/normas , Programas Informáticos/normas
5.
Nature ; 587(7833): 252-257, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177665

RESUMEN

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


Asunto(s)
Aves/clasificación , Aves/genética , Genoma/genética , Genómica/métodos , Genómica/normas , Filogenia , Animales , Pollos/genética , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Pinzones/genética , Humanos , Selección Genética/genética , Sintenía/genética
6.
Proc Natl Acad Sci U S A ; 120(7): e2201945119, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745783

RESUMEN

Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.


Asunto(s)
Biodiversidad , Biota , Humanos , Animales , Factores de Tiempo , Aves/genética , Cambio Climático , Ecosistema
7.
BMC Biol ; 22(1): 49, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413944

RESUMEN

BACKGROUND: Resolving the phylogeny of rapidly radiating lineages presents a challenge when building the Tree of Life. An Old World avian family Prunellidae (Accentors) comprises twelve species that rapidly diversified at the Pliocene-Pleistocene boundary. RESULTS: Here we investigate the phylogenetic relationships of all species of Prunellidae using a chromosome-level de novo assembly of Prunella strophiata and 36 high-coverage resequenced genomes. We use homologous alignments of thousands of exonic and intronic loci to build the coalescent and concatenated phylogenies and recover four different species trees. Topology tests show a large degree of gene tree-species tree discordance but only 40-54% of intronic gene trees and 36-75% of exonic genic trees can be explained by incomplete lineage sorting and gene tree estimation errors. Estimated branch lengths for three successive internal branches in the inferred species trees suggest the existence of an empirical anomaly zone. The most common topology recovered for species in this anomaly zone was not similar to any coalescent or concatenated inference phylogenies, suggesting presence of anomalous gene trees. However, this interpretation is complicated by the presence of gene flow because extensive introgression was detected among these species. When exploring tree topology distributions, introgression, and regional variation in recombination rate, we find that many autosomal regions contain signatures of introgression and thus may mislead phylogenetic inference. Conversely, the phylogenetic signal is concentrated to regions with low-recombination rate, such as the Z chromosome, which are also more resistant to interspecific introgression. CONCLUSIONS: Collectively, our results suggest that phylogenomic inference should consider the underlying genomic architecture to maximize the consistency of phylogenomic signal.


Asunto(s)
Flujo Génico , Genómica , Pájaros Cantores , Filogenia , Genómica/métodos , Genoma
8.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995319

RESUMEN

High genetic diversity is a good predictor of long-term population viability, yet some species persevere despite having low genetic diversity. Here we study the genomic erosion of the Seychelles paradise flycatcher (Terpsiphone corvina), a species that narrowly avoided extinction after having declined to 28 individuals in the 1960s. The species recovered unassisted to over 250 individuals in the 1990s and was downlisted from Critically Endangered to Vulnerable in the International Union for the Conservation of Nature Red List in 2020. By comparing historical, prebottleneck (130+ years old) and modern genomes, we uncovered a 10-fold loss of genetic diversity. Highly deleterious mutations were partly purged during the bottleneck, but mildly deleterious mutations accumulated. The genome shows signs of historical inbreeding during the bottleneck in the 1960s, but low levels of recent inbreeding after demographic recovery. Computer simulations suggest that the species long-term small Ne reduced the masked genetic load and made the species more resilient to inbreeding and extinction. However, the reduction in genetic diversity due to the chronically small Ne and the severe bottleneck is likely to have reduced the species adaptive potential to face environmental change, which together with a higher load, compromises its long-term population viability. Thus, small ancestral Ne offers short-term bottleneck resilience but hampers long-term adaptability to environmental shifts. In light of rapid global rates of population decline, our work shows that species can continue to suffer the effect of their decline even after recovery, highlighting the importance of considering genomic erosion and computer modeling in conservation assessments.


Asunto(s)
Especies en Peligro de Extinción , Variación Genética , Humanos , Animales , Carga Genética , Endogamia , Aves/genética
9.
Genome Res ; 31(3): 497-511, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33408157

RESUMEN

Emu and other ratites are more informative than any other birds in reconstructing the evolution of the ancestral avian or vertebrate karyotype because of their much slower rate of genome evolution. Here, we generated a new chromosome-level genome assembly of a female emu, and estimated the tempo of chromosome evolution across major avian phylogenetic branches, by comparing it to chromosome-level genome assemblies of 11 other bird and one turtle species. We found ratites exhibited the lowest numbers of intra- and inter-chromosomal changes among birds since their divergence with turtles. The small-sized and gene-rich emu microchromosomes have frequent inter-chromosomal contacts that are associated with housekeeping genes, which appears to be driven by clustering their centromeres in the nuclear interior, away from the macrochromosomes in the nuclear periphery. Unlike nonratite birds, only less than one-third of the emu W Chromosome regions have lost homologous recombination and diverged between the sexes. The emu W is demarcated into a highly heterochromatic region (WS0) and another recently evolved region (WS1) with only moderate sequence divergence with the Z Chromosome. WS1 has expanded its inactive chromatin compartment, increased chromatin contacts within the region, and decreased contacts with the nearby regions, possibly influenced by the spreading of heterochromatin from WS0. These patterns suggest that alteration of chromatin conformation comprises an important early step of sex chromosome evolution. Overall, our results provide novel insights into the evolution of avian genome structure and sex chromosomes in three-dimensional space.


Asunto(s)
Cromosomas/genética , Dromaiidae/genética , Evolución Molecular , Genoma/genética , Animales , Dromaiidae/clasificación , Femenino , Heterocromatina , Filogenia , Cromosomas Sexuales/genética
10.
Proc Biol Sci ; 291(2024): 20240397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864333

RESUMEN

In birds, males are homogametic and carry two copies of the Z chromosome ('ZZ'), while females are heterogametic and exhibit a 'ZW' genotype. The Z chromosome evolves at a faster rate than similarly sized autosomes, a phenomenon termed 'fast-Z evolution'. This is thought to be caused by two independent processes-greater Z chromosome genetic drift owing to a reduced effective population size, and stronger Z chromosome positive selection owing to the exposure of partially recessive alleles to selection. Here, we investigate the relative contributions of these processes by considering the effect of role-reversed polyandry on fast-Z in shorebirds, a paraphyletic group of wading birds that exhibit unusually diverse mating systems. We find stronger fast-Z effects under role-reversed polyandry, which is consistent with particularly strong selection on polyandrous females driving the fixation of recessive beneficial alleles. This result contrasts with previous research in birds, which has tended to implicate a primary role of genetic drift in driving fast-Z variation. We suggest that this discrepancy can be interpreted in two ways-stronger sexual selection acting on polyandrous females overwhelms an otherwise central role of genetic drift, and/or sexual antagonism is also contributing significantly to fast-Z and is exacerbated in sexually dimorphic species.


Asunto(s)
Charadriiformes , Conducta Sexual Animal , Animales , Femenino , Masculino , Charadriiformes/fisiología , Charadriiformes/genética , Cromosomas Sexuales , Selección Genética , Evolución Biológica , Flujo Genético , Selección Sexual
11.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34949638

RESUMEN

Migration allows animals to exploit spatially separated and seasonally available resources at a continental to global scale. However, responding to global climatic changes might prove challenging, especially for long-distance intercontinental migrants. During glacial periods, when conditions became too harsh for breeding in the north, avian migrants have been hypothesized to retract their distribution to reside within small refugial areas. Here, we present data showing that an Afro-Palearctic migrant continued seasonal migration, largely within Africa, during previous glacial-interglacial cycles with no obvious impact on population size. Using individual migratory track data to hindcast monthly bioclimatic habitat availability maps through the last 120,000 y, we show altered seasonal use of suitable areas through time. Independently derived effective population sizes indicate a growing population through the last 40,000 y. We conclude that the migratory lifestyle enabled adaptation to shifting climate conditions. This indicates that populations of resource-tracking, long-distance migratory species could expand successfully during warming periods in the past, which could also be the case under future climate scenarios.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Cambio Climático , Clima , Dinámica Poblacional , África , Algoritmos , Animales , Asia , Ecosistema , Europa (Continente) , Femenino , Cubierta de Hielo , Masculino , Modelos Biológicos
13.
BMC Biol ; 19(1): 118, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34130700

RESUMEN

BACKGROUND: Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. RESULTS: We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. CONCLUSION: This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.


Asunto(s)
Pollos , Domesticación , Animales , Animales Domésticos/genética , Pollos/genética , Genoma , Genómica , Humanos
14.
Proc Natl Acad Sci U S A ; 112(11): E1257-62, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733869

RESUMEN

The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.


Asunto(s)
Anuros/genética , Evolución Molecular , Genoma/genética , Animales , Secuencia de Bases , Pollos/genética , Cromosomas/genética , Elementos Transponibles de ADN/genética , Femenino , Humanos , Familia de Multigenes , Sintenía/genética , Tibet
15.
BMC Genomics ; 16: 431, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26044654

RESUMEN

BACKGROUND: Domestic goats (Capra hircus) have been selected to play an essential role in agricultural production systems, since being domesticated from their wild progenitor, bezoar (Capra aegagrus). A detailed understanding of the genetic consequences imparted by the domestication process remains a key goal of evolutionary genomics. RESULTS: We constructed the reference genome of bezoar and sequenced representative breeds of domestic goats to search for genomic changes that likely have accompanied goat domestication and breed formation. Thirteen copy number variation genes associated with coat color were identified in domestic goats, among which ASIP gene duplication contributes to the generation of light coat-color phenotype in domestic goats. Analysis of rapidly evolving genes identified genic changes underlying behavior-related traits, immune response and production-related traits. CONCLUSION: Based on the comparison studies of copy number variation genes and rapidly evolving genes between wild and domestic goat, our findings and methodology shed light on the genetic mechanism of animal domestication and will facilitate future goat breeding.


Asunto(s)
Genoma , Cabras/genética , Secuencia de Aminoácidos , Animales , Animales Domésticos/genética , Animales Salvajes/genética , Evolución Biológica , Cruzamiento , ADN/análisis , ADN/aislamiento & purificación , Variaciones en el Número de Copia de ADN , Variación Genética , Sistema Inmunológico/metabolismo , Masculino , Datos de Secuencia Molecular , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/clasificación , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/genética , Sistema Nervioso/metabolismo , Filogenia , Estructura Terciaria de Proteína , Receptor de Colecistoquinina A/química , Receptor de Colecistoquinina A/genética , Receptor de Colecistoquinina A/metabolismo , Alineación de Secuencia
16.
Nat Commun ; 15(1): 3151, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605055

RESUMEN

Endogenous retroviruses (ERVs) are ancient retroviral remnants integrated in host genomes, and commonly deleted through unequal homologous recombination, leaving solitary long terminal repeats (solo-LTRs). This study, analysing the genomes of 362 bird species and their reptilian and mammalian outgroups, reveals an unusually higher level of solo-LTRs formation in birds, indicating evolutionary forces might have purged ERVs during evolution. Strikingly in the order Passeriformes, and especially the parvorder Passerida, endogenous retrovirus K (ERVK) solo-LTRs showed bursts of formation and recurrent accumulations coinciding with speciation events over past 22 million years. Moreover, our results indicate that the ongoing expansion of ERVK solo-LTRs in these bird species, marked by high transcriptional activity of ERVK retroviral genes in reproductive organs, caused variation of solo-LTRs between individual zebra finches. We experimentally demonstrated that cis-regulatory activity of recently evolved ERVK solo-LTRs may significantly increase the expression level of ITGA2 in the brain of zebra finches compared to chickens. These findings suggest that ERVK solo-LTRs expansion may introduce novel genomic sequences acting as cis-regulatory elements and contribute to adaptive evolution. Overall, our results underscore that the residual sequences of ancient retroviruses could influence the adaptive diversification of species by regulating host gene expression.


Asunto(s)
Retrovirus Endógenos , Passeriformes , Animales , Retrovirus Endógenos/genética , Passeriformes/genética , Pollos/genética , Secuencias Repetidas Terminales/genética , Recombinación Homóloga , Mamíferos/genética
17.
Comput Biol Med ; 165: 107458, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37703713

RESUMEN

The identification of microbial characteristics associated with diseases is crucial for disease diagnosis and therapy. However, the presence of heterogeneity, high dimensionality, and large amounts of microbial data presents tremendous challenges in discovering key microbial features. In this paper, we present IDAM, a novel computational method for inferring disease-associated gene modules from metagenomic and metatranscriptomic data. This method integrates gene context conservation (uber-operons) and regulatory mechanisms (gene co-expression patterns) within a mathematical graph model to explore gene modules associated with specific diseases. It alleviates reliance on prior meta-data. We applied IDAM to publicly available datasets from inflammatory bowel disease, melanoma, type 1 diabetes mellitus, and irritable bowel syndrome. The results demonstrated the superior performance of IDAM in inferring disease-associated characteristics compared to existing popular tools. Furthermore, we showcased the high reproducibility of the gene modules inferred by IDAM using independent cohorts with inflammatory bowel disease. We believe that IDAM can be a highly advantageous method for exploring disease-associated microbial characteristics. The source code of IDAM is freely available at https://github.com/OSU-BMBL/IDAM, and the web server can be accessed at https://bmblx.bmi.osumc.edu/idam/.


Asunto(s)
Diabetes Mellitus Tipo 1 , Enfermedades Inflamatorias del Intestino , Humanos , Redes Reguladoras de Genes , Reproducibilidad de los Resultados , Diabetes Mellitus Tipo 1/genética , Enfermedades Inflamatorias del Intestino/genética , Genes Microbianos
18.
Evolution ; 77(1): 276-288, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36625454

RESUMEN

Good genes theories of sexual selection predict that polygamy will be associated with more efficient removal of deleterious alleles (purifying selection), due to the alignment of sexual selection with natural selection. On the other hand, runaway selection theories expect no such alignment of natural and sexual selection, and may instead predict less efficient purifying selection in polygamous species due to higher reproductive variance. In an analysis of polymorphism data extracted from 150-bird genome assemblies, we show that polygamous species carry significantly fewer nonsynonymous polymorphisms, relative to synonymous polymorphisms, than monogamous bird species (p = .0005). We also show that this effect is independent of effective population size, consistent with the alignment of natural selection with sexual selection and "good genes" theories of sexual selection. Further analyses found no impact of polygamy on genetic diversity, while polygamy in females (polyandry) had a marginally significant impact (p = .045). We also recapitulate previous findings that smaller body mass and greater geographic range size are associated with more efficient purifying selection, more intense GC-biased gene conversion, and greater genetic diversity.


Asunto(s)
Aves , Matrimonio , Animales , Femenino , Selección Genética , Polimorfismo Genético , Selección Sexual
19.
Sci Adv ; 9(22): eadc9507, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37262186

RESUMEN

Understanding the mechanisms underlying phenotypic innovation is a key goal of comparative genomic studies. Here, we investigated the evolutionary landscape of lineage-specific accelerated regions (LinARs) across 49 primate species. Genomic comparison with dense taxa sampling of primate species significantly improved LinAR detection accuracy and revealed many novel human LinARs associated with brain development or disease. Our study also yielded detailed maps of LinARs in other primate lineages that may have influenced lineage-specific phenotypic innovation and adaptation. Functional experimentation identified gibbon LinARs, which could have participated in the developmental regulation of their unique limb structures, whereas some LinARs in the Colobinae were associated with metabolite detoxification which may have been adaptive in relation to their leaf-eating diet. Overall, our study broadens knowledge of the functional roles of LinARs in primate evolution.


Asunto(s)
Colobinae , Evolución Molecular , Animales , Humanos , Primates/genética , Genoma , Genómica , Filogenia , Evolución Biológica
20.
Nat Ecol Evol ; 7(6): 862-872, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37106156

RESUMEN

Anticipating species' responses to environmental change is a pressing mission in biodiversity conservation. Despite decades of research investigating how climate change may affect population sizes, historical context is lacking, and the traits that mediate demographic sensitivity to changing climate remain elusive. We use whole-genome sequence data to reconstruct the demographic histories of 263 bird species over the past million years and identify networks of interacting morphological and life history traits associated with changes in effective population size (Ne) in response to climate warming and cooling. Our results identify direct and indirect effects of key traits representing dispersal, reproduction and survival on long-term demographic responses to climate change, thereby highlighting traits most likely to influence population responses to ongoing climate warming.


Asunto(s)
Biodiversidad , Cambio Climático , Animales , Frío , Aves/fisiología , Demografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA