Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(4): 864-879.e19, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675497

RESUMEN

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.


Asunto(s)
Ansiedad/metabolismo , Conducta Animal/fisiología , Encefalopatías Metabólicas/metabolismo , Estrés Psicológico/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Ansiedad/genética , Ansiedad/inmunología , Ansiedad/fisiopatología , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/fisiopatología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Dinámicas Mitocondriales/genética , Oligodendroglía/metabolismo , Oligodendroglía/patología , Análisis de la Célula Individual , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología , Transcriptoma/genética , Xantina/metabolismo
2.
Mol Cell ; 82(24): 4700-4711.e12, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384136

RESUMEN

Maintenance of energy level to drive movements and material exchange with the environment is a basic principle of life. AMP-activated protein kinase (AMPK) senses energy level and is a major regulator of cellular energy responses. The gamma subunit of AMPK senses elevated ratio of AMP to ATP and allosterically activates the alpha catalytic subunit to phosphorylate downstream effectors. Here, we report that knockout of AMPKγ, but not AMPKα, suppressed phosphorylation of eukaryotic translation elongation factor 2 (eEF2) induced by energy starvation. We identified PPP6C as an AMPKγ-regulated phosphatase of eEF2. AMP-bound AMPKγ sequesters PPP6C, thereby blocking dephosphorylation of eEF2 and thus inhibiting translation elongation to preserve energy and to promote cell survival. Further phosphoproteomic analysis identified additional targets of PPP6C regulated by energy stress in an AMPKγ-dependent manner. Thus, AMPKγ senses cellular energy availability to regulate not only AMPKα kinase, but also PPP6C phosphatase and possibly other effectors.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Biosíntesis de Proteínas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Fosforilación , Factor 2 de Elongación Peptídica/metabolismo
3.
Mol Cell ; 82(23): 4519-4536.e7, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36384137

RESUMEN

Nutrient sensing and damage sensing are two fundamental processes in living organisms. While hyperglycemia is frequently linked to diabetes-related vulnerability to microbial infection, how body glucose levels affect innate immune responses to microbial invasion is not fully understood. Here, we surprisingly found that viral infection led to a rapid and dramatic decrease in blood glucose levels in rodents, leading to robust AMPK activation. AMPK, once activated, directly phosphorylates TBK1 at S511, which triggers IRF3 recruitment and the assembly of MAVS or STING signalosomes. Consistently, ablation or inhibition of AMPK, knockin of TBK1-S511A, or increased glucose levels compromised nucleic acid sensing, while boosting AMPK-TBK1 cascade by AICAR or TBK1-S511E knockin improves antiviral immunity substantially in various animal models. Thus, we identify TBK1 as an AMPK substrate, reveal the molecular mechanism coupling a dual sensing of glucose and nuclei acids, and report its physiological necessity in antiviral defense.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Nucleicos , Animales , Proteínas Quinasas Activadas por AMP/genética , Inmunidad Innata , Antivirales , Glucosa
4.
Mol Cell ; 81(1): 198-211.e6, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33296677

RESUMEN

Replication fork reversal is a global response to replication stress in mammalian cells, but precisely how it occurs remains poorly understood. Here, we show that, upon replication stress, DNA topoisomerase IIalpha (TOP2A) is recruited to stalled forks in a manner dependent on the SNF2-family DNA translocases HLTF, ZRANB3, and SMARCAL1. This is accompanied by an increase in TOP2A SUMOylation mediated by the SUMO E3 ligase ZATT and followed by recruitment of a SUMO-targeted DNA translocase, PICH. Disruption of the ZATT-TOP2A-PICH axis results in accumulation of partially reversed forks and enhanced genome instability. These results suggest that fork reversal occurs via a sequential two-step process. First, HLTF, ZRANB3, and SMARCAL1 initiate limited fork reversal, creating superhelical strain in the newly replicated sister chromatids. Second, TOP2A drives extensive fork reversal by resolving the resulting topological barriers and via its role in recruiting PICH to stalled forks.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Genoma Humano , Inestabilidad Genómica , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ADN Helicasas/genética , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mol Cell ; 81(20): 4147-4164.e7, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34453890

RESUMEN

Missense mutations of the tumor suppressor Neurofibromin 2 (NF2/Merlin/schwannomin) result in sporadic to frequent occurrences of tumorigenesis in multiple organs. However, the underlying pathogenicity of NF2-related tumorigenesis remains mostly unknown. Here we found that NF2 facilitated innate immunity by regulating YAP/TAZ-mediated TBK1 inhibition. Unexpectedly, patient-derived individual mutations in the FERM domain of NF2 (NF2m) converted NF2 into a potent suppressor of cGAS-STING signaling. Mechanistically, NF2m gained extreme associations with IRF3 and TBK1 and, upon innate nucleic acid sensing, was directly induced by the activated IRF3 to form cellular condensates, which contained the PP2A complex, to eliminate TBK1 activation. Accordingly, NF2m robustly suppressed STING-initiated antitumor immunity in cancer cell-autonomous and -nonautonomous murine models, and NF2m-IRF3 condensates were evident in human vestibular schwannomas. Our study reports phase separation-mediated quiescence of cGAS-STING signaling by a mutant tumor suppressor and reveals gain-of-function pathogenesis for NF2-related tumors by regulating antitumor immunity.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana/metabolismo , Mutación Missense , Neoplasias/metabolismo , Neurofibromina 2/metabolismo , Nucleotidiltransferasas/metabolismo , Escape del Tumor , Animales , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Neurofibromina 2/genética , Nucleotidiltransferasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
6.
Mol Cell ; 80(5): 810-827.e7, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33171123

RESUMEN

Mitochondrial morphology shifts rapidly to manage cellular metabolism, organelle integrity, and cell fate. It remains unknown whether innate nucleic acid sensing, the central and general mechanisms of monitoring both microbial invasion and cellular damage, can reprogram and govern mitochondrial dynamics and function. Here, we unexpectedly observed that upon activation of RIG-I-like receptor (RLR)-MAVS signaling, TBK1 directly phosphorylated DRP1/DNM1L, which disabled DRP1, preventing its high-order oligomerization and mitochondrial fragmentation function. The TBK1-DRP1 axis was essential for assembly of large MAVS aggregates and healthy antiviral immunity and underlay nutrient-triggered mitochondrial dynamics and cell fate determination. Knockin (KI) strategies mimicking TBK1-DRP1 signaling produced dominant-negative phenotypes reminiscent of human DRP1 inborn mutations, while interrupting the TBK1-DRP1 connection compromised antiviral responses. Thus, our findings establish an unrecognized function of innate immunity governing both morphology and physiology of a major organelle, identify a lacking loop during innate RNA sensing, and report an elegant mechanism of shaping mitochondrial dynamics.


Asunto(s)
Dinaminas/metabolismo , Mitocondrias/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/metabolismo , Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Dinaminas/genética , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas Serina-Treonina Quinasas/genética , ARN/genética , Transducción de Señal/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
EMBO J ; 42(4): e111549, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36598329

RESUMEN

YAP/TAZ transcriptional co-activators play pivotal roles in tumorigenesis. In the Hippo pathway, diverse signals activate the MST-LATS kinase cascade that leads to YAP/TAZ phosphorylation, and subsequent ubiquitination and proteasomal degradation by SCFß-TrCP . When the MST-LATS kinase cascade is inactive, unphosphorylated or dephosphorylated YAP/TAZ translocate into the nucleus to mediate TEAD-dependent gene transcription. Hippo signaling-independent YAP/TAZ activation in human malignancies has also been observed, yet the mechanism remains largely elusive. Here, we report that the ubiquitin E3 ligase HERC3 can promote YAP/TAZ activation independently of its enzymatic activity. HERC3 directly binds to ß-TrCP, blocks its interaction with YAP/TAZ, and thus prevents YAP/TAZ ubiquitination and degradation. Expression levels of HERC3 correlate with YAP/TAZ protein levels and expression of YAP/TAZ target genes in breast tumor cells and tissues. Accordingly, knockdown of HERC3 expression ameliorates tumorigenesis of breast cancer cells. Our results establish HERC3 as a critical regulator of the YAP/TAZ stability and a potential therapeutic target for breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Humanos , Femenino , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Señalizadoras YAP , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transformación Celular Neoplásica/genética , Carcinogénesis/genética , Ubiquitinación , Neoplasias de la Mama/genética , Ubiquitinas/metabolismo , Ligasas/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
8.
Mol Cell ; 73(1): 7-21.e7, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472188

RESUMEN

The transcriptional regulators YAP and TAZ play important roles in development, physiology, and tumorigenesis and are negatively controlled by the Hippo pathway. It is yet unknown why the YAP/ TAZ proteins are frequently activated in human malignancies in which the Hippo pathway is still active. Here, by a gain-of-function cancer metastasis screen, we discovered OTUB2 as a cancer stemness and metastasis-promoting factor that deubiquitinates and activates YAP/TAZ. We found OTUB2 to be poly-SUMOylated on lysine 233, and this SUMOylation enables it to bind YAP/TAZ. We also identified a yet-unknown SUMO-interacting motif (SIM) in YAP and TAZ required for their association with SUMOylated OTUB2. Importantly, EGF and oncogenic KRAS induce OTUB2 poly-SUMOylation and thereby activate YAP/TAZ. Our results establish OTUB2 as an essential modulator of YAP/TAZ and also reveal a novel mechanism via which YAP/TAZ activity is induced by oncogenic KRAS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/enzimología , Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre Neoplásicas/enzimología , Fosfoproteínas/metabolismo , Tioléster Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Metástasis de la Neoplasia , Células Madre Neoplásicas/patología , Fenotipo , Fosfoproteínas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Sumoilación , Tioléster Hidrolasas/genética , Factores de Tiempo , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
10.
Trends Biochem Sci ; 47(12): 1059-1072, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35810076

RESUMEN

The transforming growth factor ß (TGF-ß) superfamily controls a wide spectrum of biological processes in metazoans, including cell proliferation, apoptosis, differentiation, cell-fate determination, and embryonic development. Deregulation of TGF-ß-Smad signaling contributes to developmental anomalies and a variety of disorders and diseases such as tumorigenesis, fibrotic disorders, and immune diseases. In cancer, TGF-ß has dual effects through its antiproliferative and prometastatic actions. At the cellular level, TGF-ß functions mainly through the canonical Smad-dependent pathway in a cell type-specific and context-dependent manner. Accumulating evidence has demonstrated that ubiquitination plays a vital role in regulating TGF-ß-Smad signaling. We summarize current progress on ubiquitination (Ub) and the ubiquitin ligases that regulate TGF-ß-Smad signaling.


Asunto(s)
Fenómenos Biológicos , Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Transducción de Señal/fisiología
11.
Nat Chem Biol ; 20(1): 42-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37563455

RESUMEN

Protein lipidation, which regulates numerous biological pathways and plays crucial roles in the pharmaceutical industry, is not encoded by the genetic code but synthesized post-translationally. In the present study, we report a computational approach for designing lipidation mimics that fully recapitulate the biochemical properties of natural lipidation in membrane association and albumin binding. Furthermore, we establish an engineered system for co-translational incorporation of these lipidation mimics into virtually any desired position of proteins in Escherichia coli and mammalian cells. We demonstrate the utility of these length-tunable lipidation mimics in diverse applications, including improving the half-life and activity of therapeutic proteins in living mice, anchoring functional proteins to membrane by substituting natural lipidation, functionally characterizing proteins carrying different lengths of lipidation and determining the plasma membrane-binding capacity of a given compound. Our strategy enables gain-of-function studies of lipidation in hundreds of proteins and facilitates the creation of superior therapeutic candidates.


Asunto(s)
Mamíferos , Proteínas , Ratones , Animales , Proteínas/química , Membrana Celular/metabolismo
14.
Hepatology ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557414

RESUMEN

BACKGROUND AND AIMS: Epigenetic reprogramming and escape from terminal differentiation are poorly understood enabling characteristics of liver cancer. Keratin 19 (KRT19), classically known to form the intermediate filament cytoskeleton, is a marker of stemness and worse prognosis in liver cancer. This study aimed to address the functional roles of KRT19 in liver tumorigenesis and to elucidate the underlying mechanisms. APPROACH AND RESULTS: Using multiplexed genome editing of hepatocytes in vivo, we demonstrated that KRT19 promoted liver tumorigenesis in mice. Cell fractionation revealed a previously unrecognized nuclear fraction of KRT19. Tandem affinity purification identified histone deacetylase 1 and REST corepressor 1, components of the corepressor of RE-1 silencing transcription factor (CoREST) complex as KRT19-interacting proteins. KRT19 knockout markedly enhanced histone acetylation levels. Mechanistically, KRT19 promotes CoREST complex formation by enhancing histone deacetylase 1 and REST corepressor 1 interaction, thus increasing the deacetylase activity. ChIP-seq revealed hepatocyte-specific genes, such as hepatocyte nuclear factor 4 alpha ( HNF4A ), as direct targets of KRT19-CoREST. In addition, we identified forkhead box P4 as a direct activator of aberrant KRT19 expression in liver cancer. Furthermore, treatment of primary liver tumors and patient-derived xenografts in mice suggest that KRT19 expression has the potential to predict response to histone deacetylase 1 inhibitors especially in combination with lenvatinib. CONCLUSIONS: Our data show that nuclear KRT19 acts as a transcriptional corepressor through promoting the deacetylase activity of the CoREST complex, resulting in dedifferentiation of liver cancer. These findings reveal a previously unrecognized function of KRT19 in directly shaping the epigenetic landscape in cancer.

15.
Genes Dev ; 31(3): 247-259, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28223311

RESUMEN

Tumor infiltrated type II (M2) macrophages promote tumorigenesis by suppressing immune clearance, promoting proliferation, and stimulating angiogenesis. Interestingly, macrophages were also found to enrich in small foci of altered hepatocytes containing liver tumor-initiating cells (TICs). However, whether and how TICs specifically recruit macrophages and the function of these macrophages in tumor initiation remain unknown due to technical difficulties. In this study, by generating genetically defined liver TICs, we demonstrate that TICs actively recruit M2 macrophages from as early as the single-cell stage. Elimination of TIC-associated macrophages (TICAMs) abolishes tumorigenesis in a manner dependent on the immune system. Mechanistically, activation of the Hippo pathway effector Yes-associated protein (YAP) underlies macrophage recruitment by TICs. These results demonstrate for the first time that macrophages play a decisive role in the survival of single TICs in vivo and provide a proof of principle for TIC elimination by targeting YAP or M2 macrophages.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Transformación Celular Neoplásica/inmunología , Hepatocitos/inmunología , Neoplasias Hepáticas/inmunología , Macrófagos/inmunología , Células Madre Neoplásicas/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Comunicación Celular/inmunología , Proteínas de Ciclo Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Factor de Crecimiento de Hepatocito/fisiología , Hepatocitos/metabolismo , Hepatocitos/patología , Proteínas de Homeodominio/fisiología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Células Madre Neoplásicas/citología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Serina-Treonina Quinasa 3 , Proteína p53 Supresora de Tumor/fisiología , Proteínas Señalizadoras YAP
16.
PLoS Biol ; 19(2): e3001122, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33630828

RESUMEN

The Hippo-YAP pathway responds to diverse environmental cues to manage tissue homeostasis, organ regeneration, tumorigenesis, and immunity. However, how phosphatase(s) directly target Yes-associated protein (YAP) and determine its physiological activity are still inconclusive. Here, we utilized an unbiased phosphatome screening and identified protein phosphatase magnesium-dependent 1A (PPM1A/PP2Cα) as the bona fide and physiological YAP phosphatase. We found that PPM1A was associated with YAP/TAZ in both the cytoplasm and the nucleus to directly eliminate phospho-S127 on YAP, which conferring YAP the nuclear distribution and transcription potency. Accordingly, genetic ablation or depletion of PPM1A in cells, organoids, and mice elicited an enhanced YAP/TAZ cytoplasmic retention and resulted in the diminished cell proliferation, severe gut regeneration defects in colitis, and impeded liver regeneration upon injury. These regeneration defects in murine model were largely rescued via a genetic large tumor suppressor kinase 1 (LATS1) deficiency or the pharmacological inhibition of Hippo-YAP signaling. Therefore, we identify a physiological phosphatase of YAP/TAZ, describe its critical effects in YAP/TAZ cellular distribution, and demonstrate its physiological roles in mammalian organ regeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Fosfatasa 2C/metabolismo , Regeneración/fisiología , Factores de Transcripción/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Colitis/patología , Humanos , Intestinos/fisiología , Regeneración Hepática/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides , Proteína Fosfatasa 2C/genética , Transducción de Señal , Proteínas Señalizadoras YAP
17.
Genes Dev ; 30(9): 1086-100, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27125670

RESUMEN

Cytosolic RNA/DNA sensing elicits primary defense against viral pathogens. Interferon regulatory factor 3 (IRF3), a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is indispensible for interferon production and antiviral defense. However, how the status of IRF3 activation is controlled remains elusive. Through a functional screen of the human kinome, we found that mammalian sterile 20-like kinase 1 (Mst1), but not Mst2, profoundly inhibited cytosolic nucleic acid sensing. Mst1 associated with IRF3 and directly phosphorylated IRF3 at Thr75 and Thr253. This Mst1-mediated phosphorylation abolished activated IRF3 homodimerization, its occupancy on chromatin, and subsequent IRF3-mediated transcriptional responses. In addition, Mst1 also impeded virus-induced activation of TANK-binding kinase 1 (TBK1), further attenuating IRF3 activation. As a result, Mst1 depletion or ablation enabled an enhanced antiviral response and defense in cells and mice. Therefore, the identification of Mst1 as a novel physiological negative regulator of IRF3 activation provides mechanistic insights into innate antiviral defense and potential antiviral prevention strategies.


Asunto(s)
Citosol/inmunología , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Infecciones por Rhabdoviridae/enzimología , Infecciones por Rhabdoviridae/inmunología , Animales , Línea Celular , Activación Enzimática/genética , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Serina-Treonina Quinasa 3 , Vesiculovirus/inmunología , Pez Cebra/inmunología
18.
J Hepatol ; 78(4): 704-716, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36574921

RESUMEN

BACKGROUND & AIMS: Appropriate treatment options are lacking for hepatitis E virus (HEV)-infected pregnant women and immunocompromised individuals. Thus, we aimed to identify efficient anti-HEV drugs through high-throughput screening, validate them in vitro and in vivo (in a preclinical animal study), and elucidate their underlying antiviral mechanism of action. METHODS: Using appropriate cellular and rodent HEV infection models, we studied a critical pathway for host-HEV interactions and performed a preclinical study of the corresponding antivirals, which target proteostasis of the HEV replicase. RESULTS: We found 17 inhibitors that target HEV-HSP90 interactions by unbiased compound library screening on human hepatocytes harboring an HEV replicon. Inhibitors of HSP90 (iHSP90) markedly suppressed HEV replication with efficacy exceeding that of conventional antivirals (IFNα and ribavirin) in vitro. Mechanistically, iHSP90 treatment released the viral replicase ORF1 protein from the ORF1-HSP90 complex and triggered rapid ubiquitin/proteasome-mediated degradation of ORF1, resulting in abrogated HEV replication. Furthermore, a preclinical trial in a Mongolian gerbil HEV infection model showed this novel anti-HEV strategy to be safe, efficient, and able to prevent HEV-induced liver damage. CONCLUSIONS: In this study, we uncover a proteostatic pathway that is critical for host-HEV interactions and we provide a foundation from which to translate this new understanding of the HEV life cycle into clinically promising antivirals. IMPACT AND IMPLICATIONS: Appropriate treatment options for hepatitis E virus (HEV)-infected pregnant women and immunocompromised patients are lacking; hence, there is an urgent need for safe and effective HEV-specific therapies. This study identified new antivirals (inhibitors of HSP90) that significantly limit HEV infection by targeting the viral replicase for degradation. Moreover, these anti-HEV drugs were validated in an HEV rodent model and were found to be safe and efficient for prevention of HEV-induced liver injury in preclinical experiments. Our findings substantially promote the understanding of HEV pathobiology and pave the way for antiviral development.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Animales , Humanos , Femenino , Embarazo , Proteostasis , Proteinas del Complejo de Replicasa Viral , Hepatitis E/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Proteínas Virales , Replicación Viral
19.
EMBO J ; 38(14): e99945, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31304624

RESUMEN

TGF-ß controls a variety of cellular functions during development. Abnormal TGF-ß responses are commonly found in human diseases such as cancer, suggesting that TGF-ß signaling must be tightly regulated. Here, we report that protein tyrosine phosphatase non-receptor 3 (PTPN3) profoundly potentiates TGF-ß signaling independent of its phosphatase activity. PTPN3 stabilizes TGF-ß type I receptor (TßRI) through attenuating the interaction between Smurf2 and TßRI. Consequently, PTPN3 facilitates TGF-ß-induced R-Smad phosphorylation, transcriptional responses, and subsequent physiological responses. Importantly, the leucine-to-arginine substitution at amino acid residue 232 (L232R) of PTPN3, a frequent mutation found in intrahepatic cholangiocarcinoma (ICC), disables its role in enhancing TGF-ß signaling and abolishes its tumor-suppressive function. Our findings have revealed a vital role of PTPN3 in regulating TGF-ß signaling during normal physiology and pathogenesis.


Asunto(s)
Neoplasias Hepáticas/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 3/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 3/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Trasplante de Neoplasias , Fosforilación , Estabilidad Proteica , Receptor Tipo I de Factor de Crecimiento Transformador beta/química , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Proteínas Smad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
20.
J Integr Plant Biol ; 65(3): 721-738, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36263896

RESUMEN

In plants, cortical microtubules anchor to the plasma membrane in arrays and play important roles in cell shape. However, the molecular mechanism of microtubule binding proteins, which connect the plasma membrane and cortical microtubules in cell morphology remains largely unknown. Here, we report that a plasma membrane and microtubule dual-localized IQ67 domain protein, IQD21, is critical for cotyledon pavement cell (PC) morphogenesis in Arabidopsis. iqd21 mutation caused increased indentation width, decreased lobe length, and similar lobe number of PCs, whereas IQD21 overexpression had a different effect on cotyledon PC shape. Weak overexpression led to increased lobe number, decreased indentation width, and similar lobe length, while moderate or great overexpression resulted in decreased lobe number, indentation width, and lobe length of PCs. Live-cell observations revealed that IQD21 accumulation at indentation regions correlates with lobe initiation and outgrowth during PC development. Cell biological and genetic approaches revealed that IQD21 promotes transfacial microtubules anchoring to the plasma membrane via its polybasic sites and bundling at the indentation regions in both periclinal and anticlinal walls. IQD21 controls cortical microtubule organization mainly through promoting Katanin 1-mediated microtubule severing during PC interdigitation. These findings provide the genetic evidence that transfacial microtubule arrays play a determinant role in lobe formation, and the insight into the molecular mechanism of IQD21 in transfacial microtubule organization at indentations and puzzle-shaped PC development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Microtúbulos/metabolismo , Arabidopsis/metabolismo , Katanina/metabolismo , Morfogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA