Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(6): 2740-2758, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36864759

RESUMEN

In CRISPR/Cas9 genome editing, the tight and persistent target binding of Cas9 provides an opportunity for efficient genetic and epigenetic modification on genome. In particular, technologies based on catalytically dead Cas9 (dCas9) have been developed to enable genomic regulation and live imaging in a site-specific manner. While post-cleavage target residence of CRISPR/Cas9 could alter the pathway choice in repair of Cas9-induced DNA double strand breaks (DSBs), it is possible that dCas9 residing adjacent to a break may also determine the repair pathway for this DSB, providing an opportunity to control genome editing. Here, we found that loading dCas9 onto a DSB-adjacent site stimulated homology-directed repair (HDR) of this DSB by locally blocking recruitment of classical non-homologous end-joining (c-NHEJ) factors and suppressing c-NHEJ in mammalian cells. We further repurposed dCas9 proximal binding to increase HDR-mediated CRISPR genome editing by up to 4-fold while avoiding exacerbation of off-target effects. This dCas9-based local inhibitor provided a novel strategy of c-NHEJ inhibition in CRISPR genome editing in place of small molecule c-NHEJ inhibitors, which are often used to increase HDR-mediated genome editing but undesirably exacerbate off-target effects.


Asunto(s)
Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , Animales , Reparación del ADN por Unión de Extremidades , Reparación del ADN por Recombinación , Edición Génica/métodos , ADN/genética , Reparación del ADN , Mamíferos/genética
2.
Br J Cancer ; 131(3): 430-443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38877108

RESUMEN

BACKGROUND: Targeting DNA damage repair factors, such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), may offer an opportunity for effective treatment of multiple myeloma (MM). In combination with DNA damage-inducing agents, this strategy has been shown to improve chemotherapies partially via activation of cGAS-STING pathway by an elevated level of cytosolic DNA. However, as cGAS is primarily sequestered by chromatin in the nucleus, it remains unclear how cGAS is released from chromatin and translocated into the cytoplasm upon DNA damage, leading to cGAS-STING activation. METHODS: We examined the role of DNA-PKcs inhibition on cGAS-STING-mediated MM chemosensitivity by performing mass spectrometry and mechanism study. RESULTS: Here, we found DNA-PKcs inhibition potentiated DNA damage-inducing agent doxorubicin-induced anti-MM effect by activating cGAS-STING signaling. The cGAS-STING activation in MM cells caused cell death partly via IRF3-NOXA-BAK axis and induced M1 polarization of macrophages. Moreover, this activation was not caused by defective classical non-homologous end joining (c-NHEJ). Instead, upon DNA damage induced by doxorubicin, inhibition of DNA-PKcs promoted cGAS release from cytoplasmic chromatin fragments and increased the amount of cytosolic cGAS and DNA, activating cGAS-STING. CONCLUSIONS: Inhibition of DNA-PKcs could improve the efficacy of doxorubicin in treatment of MM by de-sequestrating cGAS in damaged chromatin.


Asunto(s)
Cromatina , Daño del ADN , Proteína Quinasa Activada por ADN , Doxorrubicina , Proteínas de la Membrana , Mieloma Múltiple , Nucleotidiltransferasas , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Mieloma Múltiple/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Cromatina/metabolismo , Cromatina/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Ratones , Animales , Transducción de Señal/efectos de los fármacos
3.
Am J Physiol Heart Circ Physiol ; 323(6): H1194-H1205, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36269648

RESUMEN

Coronary artery stenosis resistance (SR) is a key factor for noninvasive calculations of fractional flow reserve derived from coronary CT angiography (FFRCT). Existing computational fluid dynamics (CFD) methods, including three-dimensional (3-D) computational and zero-dimensional (0-D) analytical models, are usually limited by high calculation cost or low precision. In this study, we have developed a multi-input back-propagation neural network (BPNN) that can rapidly and accurately predict coronary SR. A training data set including 3,028 idealized anatomic coronary artery stenosis models was constructed for 3-D CFD calculation of SR with specific blood flow boundaries. Based on 3-D calculation results, we established a BPNN whose input is geometric parameters and blood flow, whereas output is SR. Then, a test set (324 cases) was constructed to evaluate the performance of the BPNN model. To verify the validity and practicability of the network, BPNN prediction results were compared with 3-D CFD and 0-D analytical model results from patient-specific models. For test set, the mean square error (MSE) between CFD and prediction results was 2.97%, linear regression analysis indicating a good correlation between the two (P < 0.001). For 30 patient-specific models, the MSE of BPNN and the 0-D model were 3.26 and 9.7%, respectively. The calculation time for BPNN and the 3-D CFD model for 30 cases was about 2.15 s and 2 h, respectively. The present results demonstrate the practicability of using deep learning methods for fast and accurate predictions of coronary artery SR. Our study represents an advance in noninvasive calculations of FFRCT.NEW & NOTEWORTHY This study developed a multi-input back-propagation neural network (BPNN) that can be used to predict coronary artery stenosis resistance by inputting vascular geometric parameters and blood flow. Compared with previous studies, the network developed in this study can accurately and rapidly predict coronary artery stenosis resistance, which can not only meet clinical requirements but also reduce the cost of calculation duration. This study contributes to the noninvasive methods for the numerical calculation of fractional flow reserve derived from coronary CT angiography (FFRCT) and indicates that this technique can potentially be used for evaluating myocardial ischemia.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Aprendizaje Profundo , Reserva del Flujo Fraccional Miocárdico , Humanos , Estenosis Coronaria/diagnóstico por imagen , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Valor Predictivo de las Pruebas
4.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769163

RESUMEN

Distraction osteogenesis (DO) is a mechanobiological process of producing new bone and overlying soft tissues through the gradual and controlled distraction of surgically separated bone segments. The process of bone regeneration during DO is largely affected by distraction parameters. In the present study, a distraction strategy with varying distraction rates (i.e., "rate-varying distraction") is proposed, with the aim of shortening the distraction time and improving the efficiency of DO. We hypothesized that faster and better healing can be achieved with rate-varying distractions, as compared with constant-rate distractions. A computational model incorporating the viscoelastic behaviors of the callus tissues and the mechano-regulatory tissue differentiation laws was developed and validated to predict the bone regeneration process during DO. The effect of rate-varying distraction on the healing outcomes (bony bridging time and bone formation) was examined. Compared to the constant low-rate distraction, a low-to-high rate-varying distraction provided a favorable mechanical environment for angiogenesis and bone tissue differentiation, throughout the distraction and consolidation phase, leading to an improved healing outcome with a shortened healing time. These results suggest that a rate-varying clinical strategy could reduce the overall treatment time of DO and decrease the risk of complications related to the external fixator.


Asunto(s)
Regeneración Ósea , Análisis de Elementos Finitos , Osteogénesis por Distracción , Animales , Fenómenos Biomecánicos , Humanos , Osteogénesis , Osteogénesis por Distracción/métodos , Ovinos
5.
Nucleic Acids Res ; 45(18): 10614-10633, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28977657

RESUMEN

Phosphorylated histone H2AX, termed 'γH2AX', mediates the chromatin response to DNA double strand breaks (DSBs) in mammalian cells. H2AX deficiency increases the numbers of unrepaired DSBs and translocations, which are partly associated with defects in non-homologous end joining (NHEJ) and contributing to genomic instability in cancer. However, the role of γH2AX in NHEJ of general DSBs has yet to be clearly defined. Here, we showed that despite little effect on overall NHEJ efficiency, H2AX deficiency causes a surprising bias towards accurate NHEJ and shorter deletions in NHEJ products. By analyzing CRISPR/Cas9-induced NHEJ and by using a new reporter for mutagenic NHEJ, we found that γH2AX, along with its interacting protein MDC1, is required for efficient classical NHEJ (C-NHEJ) but with short deletions and insertions. Epistasis analysis revealed that ataxia telangiectasia mutated (ATM) and the chromatin remodeling complex Tip60/TRRAP/P400 are essential for this H2AX function. Taken together, these data suggest that a subset of DSBs may require γH2AX-mediated short-range nucleosome repositioning around the breaks to facilitate C-NHEJ with loss of a few extra nucleotides at NHEJ junctions. This may prevent outcomes such as non-repair and translocations, which are generally more destabilizing to genomes than short deletions and insertions from local NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Histonas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Secuencia de Bases , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Línea Celular , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Nucleótidos/análisis , Eliminación de Secuencia
6.
Acta Biochim Biophys Sin (Shanghai) ; 48(7): 594-602, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27151295

RESUMEN

Cellular response to DNA double-strand breaks (DSBs), the most deleterious type of DNA damage, is highly influenced by higher-order chromatin structure in eukaryotic cells. Compared with euchromatin, the compacted structure of heterochromatin not only protects heterochromatic DNA from damage, but also adds an extra layer of control over the response to DSBs occurring in heterochromatin. One key step in this response is the decondensation of heterochromatin structure. This decondensation process facilitates the DNA damage signaling and promotes proper heterochromatic DSB repair, thus helping to prevent instability of heterochromatic regions of genomes. This review will focus on the functions of the ataxia telangiectasia mutated (ATM) signaling cascade involving ATM, heterochromatin protein 1 (HP1), Krüppel-associated box (KRAB)-associated protein-1 (KAP-1), tat-interacting protein 60 (Tip60), and many other protein factors in DSB-induced decondensation of heterochromatin and subsequent repair of heterochromatic DSBs. As some subsets of DSBs may be repaired in heterochromatin independently of the ATM signaling, a possible repair model is also proposed for ATM-independent repair of these heterochromatic DSBs.


Asunto(s)
Daño del ADN , Heterocromatina/fisiología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN , Transducción de Señal
7.
J Biol Chem ; 289(4): 2072-83, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324267

RESUMEN

ZNF451 is a transcriptional cofactor localized to promyelocytic leukemia bodies. Here, we present evidence demonstrating that ZNF451 physically interacts with Smad3/4 and functionally inhibits TGF-ß signaling. Increased expression of ZNF451 attenuates TGF-ß-induced growth inhibitory and gene transcriptional responses, whereas depletion of ZNF451 enhances TGF-ß responses. Mechanistically, ZNF451 blocks the ability of Smad3/4 to recruit p300 in response to TGF-ß, which causes reduction of histone H3K9 acetylation on the promoters of TGF-ß target genes. Taken together, ZNF451 acts as a transcriptional corepressor for Smad3/4 and negatively regulates TGF-ß signaling.


Asunto(s)
Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Acetilación , Aminoaciltransferasas , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Represoras/genética , Proteína smad3/genética , Proteína Smad4/genética , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética
8.
J Transl Med ; 13: 64, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25885919

RESUMEN

Liver metastasis is a frequent occurrence in patients with breast cancer; however, the available treatments are limited and ineffective. While liver-specific homing of breast cancer cells is an important feature of metastasis, the formation of liver metastases is not random. Indeed, breast cancer cell factors contribute to the liver microenvironment. Major breakthroughs have been achieved recently in understanding breast cancer liver metastasis (BCLM). The process of liver metastasis consists of multiple steps and involves various factors from breast cancer cells and the liver microenvironment. A further understanding of the roles of breast cancer cells and the liver microenvironment is crucial to guide future work in clinical treatments. In this review we discuss the contribution of breast cancer cells and the liver microenvironment to liver metastasis, with the aim to improve therapeutic efficacy for patients with BCLM.


Asunto(s)
Neoplasias de la Mama/patología , Metástasis de la Neoplasia/patología , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Neoplasias Hepáticas/secundario , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Microambiente Tumoral
9.
J Transl Med ; 12: 93, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24708807

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and accounts for the third-leading cause of cancer-related deaths. Over the past decades, advances have been made in the field of surgery, but effective treatment of HCC is lacking. Due to a marked male predominance in morbidity and mortality in HCC patients, it has long been considered that sex hormones play a role in HCC development. Recently estrogen has been proven to exert protective effects against HCC through IL-6 restrictions, STAT3 inactivation and tumour-associated macrophage inhibition. While IL-6-dependent STAT3 activation is considered a key event in inflammation-induced liver cancer, the anti-inflammation effect of estrogen is well documented. The roles of the estrogen receptor and aromatase and interactions between microRNAs and estrogen in HCC have been investigated. In this review, we present a novel model to elucidate the mechanism of estrogen-mediated inhibition of HCC development through an anti-inflammation effect and provide new insights into the roles of estrogen in liver disease.


Asunto(s)
Carcinoma Hepatocelular/patología , Estrógenos/fisiología , Inflamación/patología , Neoplasias Hepáticas/patología , Humanos , Interleucina-6/antagonistas & inhibidores , MicroARNs/fisiología
10.
Comput Biol Med ; : 108615, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38910075

RESUMEN

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

11.
Artif Intell Med ; 147: 102744, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184351

RESUMEN

BACKGROUND AND OBJECTIVE: Recently, computational fluid dynamics enables the non-invasive calculation of fractional flow reserve (FFR) based on 3D coronary model, but it is time-consuming. Currently, machine learning technique has emerged as an efficient and reliable approach for prediction, which allows saving a lot of analysis time. This study aimed at developing a simplified FFR prediction model for rapid and accurate assessment of functional significance of stenosis. METHODS: A reduced-order lumped parameter model (LPM) of coronary system and cardiovascular system was constructed for rapidly simulating coronary flow, in which a machine learning model was embedded for accurately predicting stenosis flow resistance at a given flow from anatomical features of stenosis. Importantly, the LPM was personalized in both structures and parameters according to coronary geometries from computed tomography angiography and physiological measurements such as blood pressure and cardiac output for personalized simulations of coronary pressure and flow. Coronary lesions with invasive FFR ≤ 0.80 were defined as hemodynamically significant. RESULTS: A total of 91 patients (93 lesions) who underwent invasive FFR were involved in FFR derived from machine learning (FFRML) calculation. Of the 93 lesions, 27 lesions (29.0%) showed lesion-specific ischemia. The average time of FFRML simulation was about 10 min. On a per-vessel basis, the FFRML and FFR were significantly correlated (r = 0.86, p < 0.001). The diagnostic accuracy, sensitivity, specificity, positive predictive value and negative predictive value were 91.4%, 92.6%, 90.9%, 80.6% and 96.8%, respectively. The area under the receiver-operating characteristic curve of FFRML was 0.984. CONCLUSION: In this selected cohort of patients, the FFRML improves the computational efficiency and ensures the accuracy. The favorable performance of FFRML approach greatly facilitates its potential application in detecting hemodynamically significant coronary stenosis in future routine clinical practice.


Asunto(s)
Reserva del Flujo Fraccional Miocárdico , Humanos , Constricción Patológica , Presión Sanguínea , Angiografía por Tomografía Computarizada , Aprendizaje Automático
12.
J Cereb Blood Flow Metab ; 43(10): 1764-1778, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37254770

RESUMEN

Enhanced external counterpulsation (EECP) treatment for cerebral ischemic stroke patients with differing severity of stenosis, is subject to uncertainties due to the varying effects of the cerebral autoregulation mechanism on haemodynamics. The current study reports the development of a cerebral multi-autoregulation (MR) mathematical model, based on cerebral arteriole regulation of neurogenic, vascular smooth muscle reflex and shear stress mechanisms which takes into account the severity of stenosis. The model was evaluated by comparison to authentic clinical measurements of cerebral autoregulatory efficiency. Then it was applied to a 0D/3D geometric multi-scale haemodynamic model of a cerebral artery. Haemodynamic indicators were calculated under different pressurization durations of EECP to evaluate the efficacy for different stenosis lesions. Moderate stenosis of 50% to 60% produced excessive time-averaged wall shear stress in the distal area of the stenosis (>7 Pa) during prolonged pressurization and may result in damage to vascular endothelial cells. However, prolonged pressurization did not result in haemodynamic risk for severe stenosis of 70% to 80%, indicating that the duration of pressurization may be extended with increasing severity of stenosis. The current MR model accurately simulated cerebral blood flow and has relevance to the simulation of cerebral haemodynamics in a clinical setting.


Asunto(s)
Contrapulsación , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Células Endoteliales , Constricción Patológica , Accidente Cerebrovascular/terapia , Homeostasis
13.
Int J Numer Method Biomed Eng ; 39(10): e3681, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36629761

RESUMEN

The purpose of the current study was to investigate the effects of left/right coronary artery flow distribution on calculation of fractional flow reserve derived from coronary computed tomography angiography (FFRct) in different dominant types. First, 195 patients were collected to count the distribution ratios of the three categories: right dominance (RD), balanced dominance (BD), and left dominance (LD). Ratios of diameters of the left/right coronary arteries (DLCA :DRCA ) of the three types were calculated and used to represent the ratio of flow distribution (QLCA :QRCA ) in the dominant type method. The other method was known as the fixed ratio method (QLCA :QRCA  = 6:4). Second, a total of 73 patients with coronary artery disease (CAD) were enrolled for numerical calculation. A 0D/3D geometric multiscale model was used for the numerical simulation of FFR and the results of the fixed ratio method and the dominant type method were recorded as F-FFRct and D-FFRct. Lastly, invasive FFR(clinic-FFR)was used as a standard to evaluate the consistency and diagnostic performance of F-FFRct and D-FFRct. Corresponding flow distributions for the dominant type method were QLCA :QRCA  = 5:5 for RD, QLCA :QRCA  = 5.5:4.5 for BD, and QLCA :QRCA  = 6:4 for LD. D-FFRct showed a better correlation than F-FFRct (r = 0.85 vs. r = 0.81, both p < .001); the AUC (95%CI) were 0.974 (0.906-0.997, p < .0001) and 0.960 (0.886-0.992, p < .0001). Accuracy, specificity, sensitivity, positive predictive value (PPV) and negative predictive values (NPV) for D-FFRct and F-FFRct were 94.52%, 93.75%, 94.74%, 83.33%, 98.18% and 90.41%, 87.50%, 91.23%, 73.68%, 96.30%, respectively. Overall, the left/right coronary artery flow distribution was affected by the dominant type and the dominant type method was superior to the fixed ratio method in detecting coronary ischemic lesions.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Angiografía Coronaria/métodos , Vasos Coronarios/diagnóstico por imagen , Reserva del Flujo Fraccional Miocárdico/fisiología , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Tomografía Computarizada por Rayos X
14.
Comput Methods Programs Biomed ; 242: 107862, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857024

RESUMEN

BACKGROUND AND OBJECTIVE: The functional assessment of the severity of coronary stenosis from coronary computed tomography angiography (CCTA)-derived fractional flow reserve (FFR) has recently attracted interest. However, existing algorithms run at high computational cost. Therefore, this study proposes a fast calculation method of FFR for the diagnosis of ischemia-causing coronary stenosis. METHODS: We combined CCTA and machine learning to develop a simplified single-vessel coronary model for rapid calculation of FFR. First, a zero-dimensional model of single-vessel coronary was established based on CCTA, and microcirculation resistance was determined through the relationship between coronary pressure and flow. In addition, a coronary stenosis model based on machine learning was introduced to determine stenosis resistance. Computational FFR (cFFR) was then obtained by combining the zero-dimensional model and the stenosis model with inlet boundary conditions for resting (cFFRr) and hyperemic (cFFRh) aortic pressure, respectively. We retrospectively analyzed 75 patients who underwent clinically invasive FFR (iFFR), and verified the model accuracy by comparison of cFFR with iFFR. RESULTS: The average computing time of cFFR was less than 2 s. The correlations between cFFRr and cFFRh with iFFR were r = 0.89 (p < 0.001) and r = 0.90 (p < 0.001), respectively. Diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio for cFFRr and cFFRh were 90.7%, 95.0%, 89.1%, 76.0%, 98.0%, 8.7, 0.1 and 92.0%, 95.0%, 90.9%, 79.2%, 98.0%, 10.5, 0.1, respectively. CONCLUSIONS: The proposed model enables rapid prediction of cFFR and exhibits high diagnostic performance in selected patient cohorts. The model thus provides an accurate and time-efficient computational tool to detect ischemia-causing stenosis and assist with clinical decision-making.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Constricción Patológica , Estudios Retrospectivos , Angiografía Coronaria/métodos , Estenosis Coronaria/diagnóstico por imagen , Valor Predictivo de las Pruebas , Isquemia
15.
Mol Ther Nucleic Acids ; 34: 102072, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38028195

RESUMEN

Paired SpCas9 nickases (SpCas9n) are an effective strategy to reduce off-target effect in genome editing. However, this approach is not efficient with 3'-overhanging ends, limiting its applications. In order to expand the utility of paired SpCas9n in genome editing, we tested the effect of the TREX2 3'-5' exonuclease on repair of 3'-overhanging ends. We found ectopic overexpression of Trex2 stimulates the efficiency of paired SpCas9n in genome disruption with 3'-overhanging ends up to 400-fold with little stimulation of off-target editing. TREX2 overexpressed preferentially deletes entire 3' overhangs but has no significant effect on 5' overhangs. Trex2 overexpression also stimulates genome disruption by paired SpCas9n that potentially generate short 3'-overhanging ends at overlapping SpCas9n target sites, suggesting sequential nicking of overlapping target sites by SpCas9n. This approach is further simplified with improved efficiency and safety by fusion of TREX2 and particularly its DNA-binding-deficient mutant to SpCas9n. Junction analysis at overlapping targets revealed the different extent of end resection of 3' single-stranded DNA (ssDNA) by free TREX2 and TREX2 fused to SpCas9n. SpCas9n-TREX2 fusion is more convenient and safer than overexpression of free TREX2 to process 3'-overhanging ends for efficient genome disruption by paired SpCas9n, allowing practical use of this TREX2-based strategy in genome editing.

16.
Genome Med ; 15(1): 80, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803452

RESUMEN

BACKGROUND: Primary liver cancer has significant intratumor genetic heterogeneity (IGH), which drives cancer evolution and prevents effective cancer treatment. CRISPR/Cas9-induced mouse liver cancer models can be used to elucidate how IGH is developed. However, as CRISPR/Cas9 could induce chromothripsis and extrachromosomal DNA in cells in addition to targeted mutations, we wondered whether this effect contributes to the development of IGH in CRISPR/Cas9-induced mouse liver cancer. METHODS: CRISPR/Cas9-based targeted somatic multiplex-mutagenesis was used to target 34 tumor suppressor genes (TSGs) for induction of primary liver tumors in mice. Target site mutations in tumor cells were analyzed and compared between single-cell clones and their subclones, between different time points of cell proliferation, and between parental clones and single-cell clones derived from mouse subcutaneous allografts. Genomic instability and generation of extrachromosomal circular DNA (eccDNA) was explored as a potential mechanism underlying the oscillation of target site mutations in these liver tumor cells. RESULTS: After efficiently inducing autochthonous liver tumors in mice within 30-60 days, analyses of CRISPR/Cas9-induced tumors and single-cell clones derived from tumor nodules revealed multiplexed and heterogeneous mutations at target sites. Many target sites frequently displayed more than two types of allelic variations with varying frequencies in single-cell clones, indicating increased copy number of these target sites. The types and frequencies of targeted TSG mutations continued to change at some target sites between single-cell clones and their subclones. Even the proliferation of a subclone in cell culture and in mouse subcutaneous graft altered the types and frequencies of targeted TSG mutations in the absence of continuing CRISPR/Cas9 genome editing, indicating a new source outside primary chromosomes for the development of IGH in these liver tumors. Karyotyping of tumor cells revealed genomic instability in these cells manifested by high levels of micronuclei and chromosomal aberrations including chromosomal fragments and chromosomal breaks. Sequencing analysis further demonstrated the generation of eccDNA harboring targeted TSG mutations in these tumor cells. CONCLUSIONS: Small eccDNAs carrying TSG mutations may serve as an important source supporting intratumor heterogeneity and tumor evolution in mouse liver cancer induced by multiplexed CRISPR/Cas9.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias Hepáticas , Ratones , Animales , Neoplasias Hepáticas/genética , Edición Génica , Mutación , Genes Supresores de Tumor , ADN , Inestabilidad Genómica , ADN Circular
17.
J Orthop Res ; 40(3): 634-643, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33913530

RESUMEN

Dynamization, increasing the interfragmentary movement (IFM) by reducing the fixation stiffness from a rigid to a more flexible condition, is widely used clinically to promote fracture healing. However, it remains unknown how dynamization degree (relative change in fixation stiffness/IFM from a rigid to a flexible fixation) affects bone healing at various stages. To address this issue, we used a fuzzy logic-based mechano-regulated tissue differentiation algorithm on published experimental data from a sheep osteotomy healing model. We applied a varied degree of dynamization, from 0 (fully rigid fixation) to 0.9 (90% reduction in stiffness relative to the rigid fixation) after 1, 2, 3, and 4 weeks of osteotomy (R1wF, R2wF, R3wF, and R4wF) and computationally evaluated bone regeneration and biomechanical integrity over the healing process of 8 weeks. Compared with the constant rigid fixation, early dynamization (R1wF and R2wF) led to delays in bone bridging and biomechanical recovery of the osteotomized bone. However, the effect of early dynamization on healing was dependent of the degree of dynamization. Specifically, a higher dynamization degree (e.g., 0.9 for R1wF) led to a prolonged delay in bone bridging and largely unrecovered bending stiffness (48% relative to the intact bone), whereas a moderate degree of dynamization (e.g., 0.5 or 0.7) significantly enhanced bone formation and biomechanical properties of the osteotomized bone. These results suggest that dynamization degree and timing interactively affect the healing process. A combination of early dynamization with a moderate degree could enhance the ultimate biomechanical recovery of the fractured bone.


Asunto(s)
Curación de Fractura , Fracturas Óseas , Animales , Fenómenos Biomecánicos , Osteogénesis , Osteotomía/métodos , Ovinos
18.
J Biomech ; 140: 111166, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35671542

RESUMEN

It was hypothesized that the microcirculatory resistance of resting state (Rm-res) might be a good predictor for ischemia. In this study, the quantitative relationship between Rm-res and myocardial ischemia in different stenosed degrees was explored and verified through retrospective analysis, and the diagnostic performance was evaluated. 136 patients were screened and divided into a training set (90 patients) and a validation set (46 patients). In the training set, Rm-res was calculated, and thresholds were determined by exploring the relationship between Rm-res and myocardial ischemia in different stenosed degrees. In the validation set, the diagnostic performance of the thresholds was verified. It was found that the 90 data mean difference (95%CI) of Rm-res between the ischemic group and the non-ischemic group was 63.03 (95 %CI: 25.72-100.34), p < 0.05. In the training set with stenosed degree 41-60%, 61-70%, 71-80%, and >81%, the average of Rm-res in the ischemic and non-ischemic groups were (80.79, 136.87), (96.41, 172.62), (128.99, 198.94) and (175.95, 310.79) mmHg/s/ml. The Rm-res thresholds were 87.18, 118.96, 142.35, and 177.39 mmHg/s/ml. In the validation set, the overall sensitivity, specificity, PPV, NPV, and accuracy were 73.3%, 77.4%, 61.1%, 85.7%, and 76.1%. In conclusion, Rm-res had a significant predictor on myocardial ischemia. As a smaller Rm-res represents greater myocardial mass perfusion, it is more likely that a stenosis will have a functional impact. Threshold analysis showed that Rm-res of different stenosed degrees was a quantitative predictor of myocardial ischemia, which could assist physicians with clinical treatment strategies.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Angiografía Coronaria , Humanos , Microcirculación , Isquemia Miocárdica/diagnóstico , Estudios Retrospectivos
19.
Math Biosci Eng ; 19(3): 3127-3146, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35240824

RESUMEN

OBJECTIVE: To explore the influence of the blood flow-diameter scaling laws of $ \mathrm{Q}\mathrm{\alpha }{\mathrm{D}}^{3} $, $ \mathrm{Q}\mathrm{\alpha }{\mathrm{D}}^{2.7} $ and $ \text{Q}\alpha \text{D}{}^{7}\!\!\diagup\!\!{}_{3}\; $ on the numerical simulation of fraction flow reserve based on CTA images and to find the optimal exponents. METHODS: 1) 26 patients with coronary artery disease were screened according to the inclusion criteria; 2) Microcirculation resistance (Rm) was calculated under the 3, 2.7 and 7/3 power of the flow-diameter scaling law, which were recorded as 3Rm, 2.7Rm and 7/3Rm, respectively; 3) 3Rm, 2.7Rm and 7/3Rm were used as exit boundary conditions to simulate FFRCT, quoted as 3FFRCT, 2.7FFRCT and 7/3FFRCT, respectively; 4) The correlation and diagnostic performance between three kinds of FFRCT and FFR were analyzed. RESULTS: The p-values of comparing 3Rm, 2.7Rm and 7/3Rm with FFR were 0.004, 0.005 and 0.010, respectively; the r value between 7/3FFRCT and FFR (0.96) was better than that of 3FFRCT (0.95) and 2.7FFRCT (0.95); the 95% LoA between 7/3FFRCT and FFR (-0.08~0.11) was smaller than that of 3FFRCT (-0.10~0.12) and 2.7FFRCT (-0.09~0.11); the AUC and accuracy of 7/3FFRCT [0.962 (0.805-0.999), 96.15%] were the same as those of 2.7FFRCT [0.962 (0.805-0.999), 96.15%] and better than those of 3FFRCT [0.944 (0.777-0.996), 92.3%]. The prediction threshold of 7/3FFRCT (0.791) was closer to 0.8 than that of 3FFRCT (0.816) and 2.7FFRCT (0.787). CONCLUSION: The blood flow-diameter scaling law affects the FFRCT simulation by influencing the exit boundary condition Rm of the calculation. With $ Q\alpha D{}^{7}\!\!\diagup\!\!{}_{3}\; $, FFRCT had the highest diagnostic performance. The blood flow-diameter scaling law provides theoretical support for the blood flow distribution in the bifurcated vessel and improves the FFRCT model.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Reserva del Flujo Fraccional Miocárdico/fisiología , Humanos , Tomografía Computarizada por Rayos X
20.
Comput Methods Programs Biomed ; 227: 107232, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36371976

RESUMEN

BACKGROUND AND OBJECTIVE: Distraction osteogenesis (DO), a bone lengthening technique, is widely employed to treat congenital and acquired limb length discrepancies and large segmental bone defects. However, a major issue of DO is the prolonged consolidation phase (10-36 months) during which patients must wear a cumbersome external fixator. Attempts have been made to accelerate the healing process of DO by an alternating distraction and compression mode (so-called "accordion" technique or AT). However, it remains unclear how varied AT parameters affect DO outcomes and what the most effective AT mode is. METHODS: Based on an experimentally-verified mechanobiological model, we performed a parametric analysis via in silico simulation of the bone regeneration process of DO under different AT modes, including combinations of varied application times (AT began at week 1-8 of the consolidation phase), durations (AT was used continuously for 1 week, 2 weeks or 4 weeks) and rates (distraction or compression at 0.25, 0.5, 0.75, and 1 mm/12 h). The control group had no AT applied during the consolidation phase. RESULTS: Compared with the control group (no AT), AT applied at an early consolidation stage (e.g. week 1 of the consolidation phase) significantly enhanced bone formation and reduced the overall healing time. However, the effect of AT on bone healing was dependent on its duration and rate. Specifically, a moderate rate of AT (e.g. 0.5 mm/12 h) lasting for two weeks promoted blood perfusion recovery and bone regeneration, ultimately shortening the healing time. Conversely, over-high rates (e.g. 1 mm/12 h) and longer durations (e.g. 4 weeks) of AT adversely affected bone regeneration and blood perfusion recovery, thereby delaying bone bridging. CONCLUSIONS: These results suggest that the therapeutic effects of AT on DO are highly dependent of the AT parameters of choice. Under appropriate durations and rates, the AT applied at an early consolidation phase is beneficial for blood recovery and bone regeneration. These results may provide a basis for selecting effective AT modes to accelerate consolidation and reduce the overall treatment period of DO.


Asunto(s)
Osteogénesis por Distracción , Humanos , Osteogénesis por Distracción/métodos , Regeneración Ósea , Cicatrización de Heridas , Osteogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA