Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7879): 188-194, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616074

RESUMEN

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1-4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico-basal ganglia-thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


Asunto(s)
Ganglios Basales/citología , Corteza Cerebral/citología , Vías Nerviosas , Neuronas/citología , Tálamo/citología , Animales , Ganglios Basales/anatomía & histología , Corteza Cerebral/anatomía & histología , Masculino , Ratones , Ratones Endogámicos C57BL , Tálamo/anatomía & histología
2.
J Immunol ; 212(11): 1714-1721, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598411

RESUMEN

Ag-specific effector CD4+ T cells play a crucial role in defending against exogenous pathogens. However, the mechanisms governing the differentiation and function of IFN-γ-producing effector CD4+ Th1 cells in immune responses remain largely unknown. In this study, we elucidated the pivotal role of zinc finger protein 335 (Zfp335) in regulating effector Th1 cell differentiation and survival during acute bacterial infection. Mice with Zfp335 knockout in OT-II cells exhibited impaired Ag-specific CD4+ T cell expansion accompanied by a significant reduction in resistance to Listeria infection. Furthermore, Zfp335 deficiency restricted the effector CD4+ Th1 cell population and compromised their survival upon Listeria challenge. The expression of T-bet and IFN-γ was accordingly decreased in Zfp335-deficient Th1 cells. Mechanistically, Zfp335 directly bound to the promoter region of the Lmna gene and regulated its expression. Overexpression of Lmna was able to rescue the survival and function of Zfp335-deficient effector Th1 cells. Therefore, our study provides novel insights into the mechanisms governing effector Th1 cell differentiation and survival during acute infection.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN , Lamina Tipo A , Ratones Noqueados , Células TH1 , Factores de Transcripción , Animales , Ratones , Diferenciación Celular/inmunología , Diferenciación Celular/genética , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Lamina Tipo A/genética , Listeriosis/inmunología , Ratones Endogámicos C57BL , Células TH1/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nature ; 567(7749): 516-520, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30818324

RESUMEN

The nitrogen cycle has been radically changed by human activities1. China consumes nearly one third of the world's nitrogen fertilizers. The excessive application of fertilizers2,3 and increased nitrogen discharge from livestock, domestic and industrial sources have resulted in pervasive water pollution. Quantifying a nitrogen 'boundary'4 in heterogeneous environments is important for the effective management of local water quality. Here we use a combination of water-quality observations and simulated nitrogen discharge from agricultural and other sources to estimate spatial patterns of nitrogen discharge into water bodies across China from 1955 to 2014. We find that the critical surface-water quality standard (1.0 milligrams of nitrogen per litre) was being exceeded in most provinces by the mid-1980s, and that current rates of anthropogenic nitrogen discharge (14.5 ± 3.1 megatonnes of nitrogen per year) to fresh water are about 2.7 times the estimated 'safe' nitrogen discharge threshold (5.2 ± 0.7 megatonnes of nitrogen per year). Current efforts to reduce pollution through wastewater treatment and by improving cropland nitrogen management can partially remedy this situation. Domestic wastewater treatment has helped to reduce net discharge by 0.7 ± 0.1 megatonnes in 2014, but at high monetary and energy costs. Improved cropland nitrogen management could remove another 2.3 ± 0.3 megatonnes of nitrogen per year-about 25 per cent of the excess discharge to fresh water. Successfully restoring a clean water environment in China will further require transformational changes to boost the national nutrient recycling rate from its current average of 36 per cent to about 87 per cent, which is a level typical of traditional Chinese agriculture. Although ambitious, such a high level of nitrogen recycling is technologically achievable at an estimated capital cost of approximately 100 billion US dollars and operating costs of 18-29 billion US dollars per year, and could provide co-benefits such as recycled wastewater for crop irrigation and improved environmental quality and ecosystem services.


Asunto(s)
Agricultura/métodos , Fertilizantes/análisis , Fertilizantes/provisión & distribución , Ciclo del Nitrógeno , Nitrógeno/análisis , Nitrógeno/provisión & distribución , Calidad del Agua/normas , Agricultura/estadística & datos numéricos , Animales , China , Ecosistema , Monitoreo del Ambiente , Abastecimiento de Alimentos/métodos , Abastecimiento de Alimentos/estadística & datos numéricos , Humanos , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis
4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38836835

RESUMEN

Neocortex is a complex structure with different cortical sublayers and regions. However, the precise positioning of cortical regions can be challenging due to the absence of distinct landmarks without special preparation. To address this challenge, we developed a cytoarchitectonic landmark identification pipeline. The fluorescence micro-optical sectioning tomography method was employed to image the whole mouse brain stained by general fluorescent nucleotide dye. A fast 3D convolution network was subsequently utilized to segment neuronal somas in entire neocortex. By approach, the cortical cytoarchitectonic profile and the neuronal morphology were analyzed in 3D, eliminating the influence of section angle. And the distribution maps were generated that visualized the number of neurons across diverse morphological types, revealing the cytoarchitectonic landscape which characterizes the landmarks of cortical regions, especially the typical signal pattern of barrel cortex. Furthermore, the cortical regions of various ages were aligned using the generated cytoarchitectonic landmarks suggesting the structural changes of barrel cortex during the aging process. Moreover, we observed the spatiotemporally gradient distributions of spindly neurons, concentrated in the deep layer of primary visual area, with their proportion decreased over time. These findings could improve structural understanding of neocortex, paving the way for further exploration with this method.


Asunto(s)
Aprendizaje Profundo , Neocórtex , Neuronas , Animales , Neocórtex/citología , Ratones , Ratones Endogámicos C57BL , Masculino , Imagenología Tridimensional/métodos , Tomografía Óptica/métodos
5.
J Cell Mol Med ; 28(10): e18390, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801402

RESUMEN

T cells are crucial for adaptive immunity to regulate proper immune response and immune homeostasis. T cell development occurs in the thymus and mainly differentiates into CD4+ and CD8+ T cell subsets. Upon stimulation, naive T cells differentiate into distinct CD4+ helper and CD8+ cytotoxic T cells, which mediate immunity homeostasis and defend against pathogens or tumours. Trace elements are minimal yet essential components of human body that cannot be overlooked, and they participate in enzyme activation, DNA synthesis, antioxidant defence, hormone production, etc. Moreover, trace elements are particularly involved in immune regulations. Here, we have summarized the roles of eight essential trace elements (iron, zinc, selenium, copper, iodine, chromium, molybdenum, cobalt) in T cell development, activation and differentiation, and immune response, which provides significant insights into developing novel approaches to modulate immunoregulation and immunotherapy.


Asunto(s)
Oligoelementos , Humanos , Oligoelementos/metabolismo , Animales , Linfocitos T/inmunología , Linfocitos T/metabolismo , Diferenciación Celular , Selenio/metabolismo , Activación de Linfocitos/inmunología
6.
Nat Methods ; 18(3): 309-315, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33649587

RESUMEN

The microscopic visualization of large-scale three-dimensional (3D) samples by optical microscopy requires overcoming challenges in imaging quality and speed and in big data acquisition and management. We report a line-illumination modulation (LiMo) technique for imaging thick tissues with high throughput and low background. Combining LiMo with thin tissue sectioning, we further develop a high-definition fluorescent micro-optical sectioning tomography (HD-fMOST) method that features an average signal-to-noise ratio of 110, leading to substantial improvement in neuronal morphology reconstruction. We achieve a >30-fold lossless data compression at a voxel resolution of 0.32 × 0.32 × 1.00 µm3, enabling online data storage to a USB drive or in the cloud, and high-precision (95% accuracy) brain-wide 3D cell counting in real time. These results highlight the potential of HD-fMOST to facilitate large-scale acquisition and analysis of whole-brain high-resolution datasets.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Microscopía/métodos , Microtomía/métodos , Relación Señal-Ruido , Tomografía/métodos
7.
Ophthalmology ; 131(5): 589-594, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38081329

RESUMEN

PURPOSE: Aplasia of lacrimal and salivary glands (ALSG) is a syndromic disorder characterized by aplasia of lacrimal and salivary systems. Reported ophthalmic manifestations of ALSG include aplasia of lacrimal glands, punctal agenesis, lacrimal sac mucocele, and membranous congenital nasolacrimal duct obstruction (CNLDO). Bony CNLDO, a rare clinical entity, has not been associated with any syndromic disorder. This study investigated the relationship between genetic mutations and bony CNLDO in 3 Chinese families with ALSG. DESIGN: Single-center observational case study. PARTICIPANTS: Three Chinese families with bony CNLDO, including 7 affected and 9 healthy family members. METHODS: Slit-lamp ophthalmic examination, comprehensive physical examination, orbital computed tomography (CT) imaging, cervicofacial magnetic resonance imaging, audiometry, and whole exome sequencing on periphery blood were performed. Variants were cross-referenced with 1000 control genomes and various population databases. Pathologic variants were identified using bioinformatic tools. MAIN OUTCOME MEASURES: Clinical examination, diagnostic imaging, whole exome sequencing, and bioinformatic analysis findings. RESULTS: Affected patients showed decreased tear production on the Schimer I test and reduced tear breakup time. Bony CNLDO was observed on CT, showing unilateral or bilateral bony termination at the middle or terminal segment of the nasolacrimal canal. Magnetic resonance imaging showed aplasia or absence of lacrimal, parotid, and submandibular glands. Physical examination revealed normal ears, digits, and facial morphology. Audiometry and dental assessment were conducted on the pediatric patients and yielded normal results. The clinical characteristics of patients aligned with a diagnosis of ALSG. Genomic analysis revealed 3 novel heterozygous missense mutations of the Fgf10 gene: c.316T→C, c.327C→G, and c.332T→G. The inheritance pattern was autosomal dominant with variable penetrance. These variants were not observed in 1000 control genomes and population databases. These variant positions also were shown to be highly conserved across various animal species. Mutated genes and proteins were predicted as deleterious with most computational models, with a few suggesting they may be benign. CONCLUSIONS: Bony CNLDO was identified as a novel phenotype of ALSG implicated by missense mutations of highly conserved residues in the Fgf10 gene. These cases broadened our knowledge of Fgf10-related phenotypes and prompted clinicians to consider syndromic associations in patients with bony CNLDO. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.

8.
Circ Res ; 130(3): 352-365, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34995101

RESUMEN

BACKGROUND: Unraveling how new coronary arteries develop may provide critical information for establishing novel therapeutic approaches to treating ischemic cardiac diseases. There are 2 distinct coronary vascular populations derived from different origins in the developing heart. Understanding the formation of coronary arteries may provide insights into new ways of promoting coronary artery formation after myocardial infarction. METHODS: To understand how intramyocardial coronary arteries are generated to connect these 2 coronary vascular populations, we combined genetic lineage tracing, light sheet microscopy, fluorescence micro-optical sectioning tomography, and tissue-specific gene knockout approaches to understand their cellular and molecular mechanisms. RESULTS: We show that a subset of intramyocardial coronary arteries form by angiogenic extension of endocardium-derived vascular tunnels in the neonatal heart. Three-dimensional whole-mount fluorescence imaging showed that these endocardium-derived vascular tunnels or tubes adopt an arterial fate in neonates. Mechanistically, we implicate Mettl3 (methyltransferase-like protein 3) and Notch signaling in regulating endocardium-derived intramyocardial coronary artery formation. Functionally, these intramyocardial arteries persist into adulthood and play a protective role after myocardial infarction. CONCLUSIONS: A subset of intramyocardial coronary arteries form by extension of endocardium-derived vascular tunnels in the neonatal heart.


Asunto(s)
Vasos Coronarios/embriología , Endocardio/embriología , Animales , Vasos Coronarios/crecimiento & desarrollo , Vasos Coronarios/metabolismo , Endocardio/crecimiento & desarrollo , Endocardio/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Organogénesis
9.
J Immunol ; 209(5): 886-895, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914836

RESUMEN

Memory CD8+ T cells play an essential role in providing effective and lifelong protection against pathogens. Comprehensive transcriptional and epigenetic networks are involved in modulating memory T cell development, but the molecular regulations of CD8+ memory T cell formation and long-term persistence remain largely unknown. In this study, we show that zinc finger protein 335 (Zfp335) is indispensable for CD8+ T cell memory establishment and maintenance during acute infections. Mice with Zfp335 deletion in CD8+ T cells exhibit a significant reduction of memory T cells and memory precursor cells in the contraction phase. Zfp335 deficiency in CD8+ T cells resulted in decreased expression of memory featured genes Eomes and IL-2Rß, leading to a loss of memory identity and an increase of apoptosis in response to IL-7 and IL-15. Mechanistically, Zfp335 directly binds to and regulates TCF-1, known to be critical for memory T cell development. Importantly, overexpression TCF-1 could rescue the defects in the survival of both CD8+ memory precursors and memory T cells caused by Zfp335 deficiency. Collectively, our findings reveal that Zfp335 serves as a novel transcriptional factor upstream of TCF-1 in regulating CD8+ T cell memory.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-15 , Animales , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/genética , Regulación de la Expresión Génica , Memoria Inmunológica/genética , Interleucina-15/metabolismo , Interleucina-7/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción
10.
J Immunol ; 209(5): 855-863, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130132

RESUMEN

Effector CD8+ T cells are crucial players in adaptive immunity for effective protection against invading pathogens. The regulatory mechanisms underlying CD8+ T cell effector differentiation are incompletely understood. In this study, we defined a critical role of mediator complex subunit 1 (Med1) in controlling effector CD8+ T cell differentiation and survival during acute bacterial infection. Mice with Med1-deficient CD8+ T cells exhibited significantly impaired expansion with evidently reduced killer cell lectin-like receptor G1+ terminally differentiated and Ly6c+ effector cell populations. Moreover, Med1 deficiency led to enhanced cell apoptosis and expression of multiple inhibitory receptors (programmed cell death 1, T cell Ig and mucin domain-containing-3, and T cell immunoreceptor with Ig and ITIM domains). RNA-sequencing analysis revealed that T-bet- and Zeb2-mediated transcriptional programs were impaired in Med1-deficient CD8+ T cells. Overexpression of T-bet could rescue the differentiation and survival of Med1-deficient CD8+ effector T cells. Mechanistically, the transcription factor C/EBPß promoted T-bet expression through interacting with Med1 in effector T cells. Collectively, our findings revealed a novel role of Med1 in regulating effector CD8+ T cell differentiation and survival in response to bacterial infection.


Asunto(s)
Linfocitos T CD8-positivos , Subunidad 1 del Complejo Mediador , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular , Subunidad 1 del Complejo Mediador/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mucinas/metabolismo , ARN/metabolismo , Receptores Similares a Lectina de Células NK/metabolismo , Proteínas de Dominio T Box/metabolismo
11.
Pestic Biochem Physiol ; 200: 105835, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582597

RESUMEN

Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 µL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-ß-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.


Asunto(s)
Aldehídos , Citrus , Hesperidina , Citrus/química , Citrus/genética , Citrus/metabolismo , Aminoácidos Aromáticos/metabolismo , Resistencia a la Enfermedad , Hesperidina/análisis , Hesperidina/metabolismo , Hesperidina/farmacología , Triptófano/metabolismo , Simulación del Acoplamiento Molecular , Frutas
12.
Neuroimage ; 282: 120372, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37748558

RESUMEN

Source imaging of Electroencephalography (EEG) and Magnetoencephalography (MEG) provides a noninvasive way of monitoring brain activities with high spatial and temporal resolution. In order to address this highly ill-posed problem, conventional source imaging models adopted spatio-temporal constraints that assume spatial stability of the source activities, neglecting the transient characteristics of M/EEG. In this work, a novel source imaging method µ-STAR that includes a microstate analysis and a spatio-temporal Bayesian model was introduced to address this problem. Specifically, the microstate analysis was applied to achieve automatic determination of time window length with quasi-stable source activity pattern for optimal reconstruction of source dynamics. Then a user-specific spatial prior and data-driven temporal basis functions were utilized to characterize the spatio-temporal information of sources within each state. The solution of the source reconstruction was obtained through a computationally efficient algorithm based upon variational Bayesian and convex analysis. The performance of the µ-STAR was first assessed through numerical simulations, where we found that the determination and inclusion of optimal temporal length in the spatio-temporal prior significantly improved the performance of source reconstruction. More importantly, the µ-STAR model achieved robust performance under various settings (i.e., source numbers/areas, SNR levels, and source depth) with fast convergence speed compared with five widely-used benchmark models (including wMNE, STV, SBL, BESTIES, & SI-STBF). Additional validations on real data were then performed on two publicly-available datasets (including block-design face-processing ERP and continuous resting-state EEG). The reconstructed source activities exhibited spatial and temporal neurophysiologically plausible results consistent with previously-revealed neural substrates, thereby further proving the feasibility of the µ-STAR model for source imaging in various applications.


Asunto(s)
Mapeo Encefálico , Electroencefalografía , Humanos , Teorema de Bayes , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Magnetoencefalografía/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
13.
Planta ; 259(1): 6, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38001306

RESUMEN

MAIN CONCLUSION: Rpf107 is involved in the infection process of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The LURP-one related (LOR) protein family plays a pivotal role in mediating plant defense responses against both biotic and abiotic stresses. However, our understanding of its function in the symbiotic interaction between legumes and rhizobia remains limited. Here, Rpf107, a homolog of LOR, was identified in Robinia pseudoacacia (black locust). The subcellular localization of Rpf107 was analyzed, and its function was investigated using RNA interference (RNAi) and overexpression techniques. The subcellular localization assay revealed that Rpf107 was mainly distributed in the plasma membrane and nucleus. Rpf107 silencing prevented rhizobial infection and hampered plant growth. The number of infected cells in the nitrogen fixation zone of the Rpf107-RNAi nodules was also noticeably lower than that in the control nodules. Notably, Rpf107 silencing resulted in bacteroid degradation and the premature aging of nodules. In contrast, the overexpression of Rpf107 delayed the senescence of nodules and prolonged the nitrogen-fixing ability of nodules. These results demonstrate that Rpf107 was involved in the infection of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The findings reveal that a member of the LOR protein family plays a role in leguminous root nodule symbiosis, which is helpful to clarify the functions of plant LOR protein family and fully understand the molecular mechanisms underlying legume-rhizobium symbiosis.


Asunto(s)
Fabaceae , Rhizobium , Robinia , Robinia/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/genética , Genes vif , Fijación del Nitrógeno/genética , Rhizobium/fisiología , Fabaceae/genética , Proteínas de Plantas/metabolismo
14.
Phys Chem Chem Phys ; 25(37): 25838-25849, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37724577

RESUMEN

Novel amorphous compounds which could simultaneously use 25% singlet excitons and 75% triplet excitons as the energy source for light amplification enable the reduction of the threshold current density for electrically pumped organic semiconductor laser diodes (OSLDs); however, there is always a trade-off between the high radiative decay rate of the local excited (LE) state that is required for amplified spontaneous emission (ASE) and high exciton utilization benefiting from the charge-transfer (CT) state during electroluminescence (EL). Herein, we have explored a delicate balance to achieve both low ASE threshold and high EL exciton utilization by adopting a carefully tailored hybridized local and charge-transfer (HLCT) molecular design. A series of donor-π-acceptor (D-π-A) molecules (SBz-1, SBz-2 and SBz-3) are synthesized, and the structural change mainly refers to the spatial distance between D and A which could regulate the excited-state character via adjusting the CT length. Notably, the ASE phenomenon with a low threshold (2.97 µJ cm-2) and a high exciton utilization of 57.6% are achieved at the same time for SBz-2 with an appropriate CT length. The results provide guidance for molecular design toward harvesting triplet excitons in organic laser materials.

15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(9): 1296-1303, 2023.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38044640

RESUMEN

OBJECTIVES: The differentiation of CD4+ T cells is regulated by a complex and fine signaling pathway composed of many molecules during immune response, and the molecular mechanism for regulating T-bet expression is unclear. Mediator complex subunit 1 (Med1) can combine with a variety of co-factors to regulate gene transcription, promote cell proliferation and survival, and affect invariant natural killer T cell (iNKT) development. This study aims to investigate the effect of Med1 on T cell development and CD4+ T cell differentiation in immune response. METHODS: Mice with T cell-specific knockout of Med1 gene (Med1F/FCD4cre+, KO) were constructed and verified. The percentage and number of CD4+ and CD8+ T cells in thymus, spleen, and lymph nodes of KO mice and control (Con) mice (Med1F/FCD4cre-) were detected by flow cytometry. After 8 days of infection with lymphocytic choriomeningitis virus (LCMV), the percentage and number of CD4+ T cells or antigen-specific (GP66+) CD4+ T cells, the percentage and number of Th1 cells (Ly6c+PSGL1+) in CD4+ T cells or antigen-specific CD4+ T cells were examined in the spleen of mice. Moreover, the fluorescence intensity of T-bet in CD4+ T cells or antigen-specific CD4+ T cells was analyzed. RESULTS: Compared with the Con group, the percentage and number of CD4+ T cells and CD8+ T cells in the thymus, CD4+ T cells in the spleen and lymph nodes of the KO group showed no significant differences (all P>0.05), but the percentage and number of CD8+ T cells in the spleen and lymph nodes of the KO group were diminished significantly (all P<0.05). After 8 days of infection with LCMV, there was no significant difference in the percentage and number of CD4+ T cells or antigen-specific CD4+ T cells in the spleen between the KO group and the Con group (all P>0.05), while in comparison with the Con group, the percentage and number of Th1 cells in CD4+ T cells or antigen-specific CD4+ T cells, and the expression of T-bet in CD4+ T cells or antigen-specific CD4+ T cells were significantly reduced in the spleen of the KO group (all P<0.05). CONCLUSIONS: Specific knockout of Med1 in T cells does not affect the development of CD4+ and CD8+ T cells in the thymus, but does affect the maintenance of peripheral CD8+ T cells. In the immune response, Med1 gene deletion affects the expression of transcription factor T-bet, which in turn to reduce Th1 cell differentiation.


Asunto(s)
Linfocitos T CD8-positivos , Subunidad 1 del Complejo Mediador , Ratones , Animales , Linfocitos T CD8-positivos/metabolismo , Subunidad 1 del Complejo Mediador/metabolismo , Inmunidad , Diferenciación Celular , Virus de la Coriomeningitis Linfocítica/metabolismo , Células TH1/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Ratones Endogámicos C57BL
16.
Mar Drugs ; 20(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36005528

RESUMEN

Three new cytochalasins, phomoparagins A-C (1-3), along with five known analogs (4-8), were isolated from Phomopsis asparagi DHS-48, a mangrove-derived endophytic fungus. Their structures, including their absolute configurations, were elucidated using a combination of detailed HRESIMS, NMR, and ECD techniques. Notably, 1 possessed an unprecedented 5/6/5/8/5-fused pentacyclic skeleton. These compounds were tested for their inhibitory activity against concanavalin A (ConA)/lipopolysaccharide (LPS)-induced spleen lymphocyte proliferation and calcineurin (CN) enzyme. Several metabolites (2 and 4-6) exhibited fascinating inhibitory activities with a relatively low toxicity. Furthermore, 2 was demonstrated to inhibit ConA-stimulated activation of NFAT1 dephosphorylation and block NFAT1 translocation in vitro, subsequently inhibiting the transcription of interleukin-2 (IL-2). Our results provide evidence that 2 may, at least partially, suppress the activation of spleen lymphocytes via the CN/NFAT signaling pathway, highlighting that it could serve as an effective immunosuppressant that is noncytotoxic and natural.


Asunto(s)
Citocalasinas , Hongos , Citocalasinas/farmacología , Inmunosupresores/farmacología , Estructura Molecular , Phomopsis
17.
Opt Express ; 29(6): 8725-8736, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820314

RESUMEN

In recent years, the feasibility of quantum key distribution (QKD) in a water channel has been verified by theory and experiment. Here, we present an experimental investigation of QKD and decoy-state QKD based on the BB84 protocol. The experiment was carried out in a 10 m water tank. The attenuation coefficient of tap water is 0.08/m, which is close to Jerlov Type II seawater. We measured the probability-of-detection matrix of polarization states, and the average fidelity of the four polarization states is up to 98.39%. For the 10 m underwater QKD experiment, 20 MHz optical pulses are generated by modulating the laser diode (LD) and attenuated to an average of 0.1 photons per pulse. The security key rate can reach 563.41 kbits/s and the quantum bit error rate (QBER) is 0.36%. Two decoy states (one of which is the vacuum state) was used in the 10 m underwater decoy-state QKD experiment, and the average QBER of signal state is 0.95%, the security key rate reaches 711.29 kbits/s. According to the parameters of the decoy-state experiment, the maximum secure transmission distance of the underwater decoy-state QKD is predicted to be 19.2 m, while it can be increased to 237.1 m in Jerlov Type I seawater with a lower dark count single photon detector (SPD).

18.
BMC Cardiovasc Disord ; 21(1): 381, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362308

RESUMEN

BACKGROUND: It has been suggested that patent foramen ovale (PFO) contributes to the majority of cryptogenic stroke cases in young people, however, the direct link is still undetermined. Here we analyzed the correlation between PFO and brain ischemia lesions in a cohort of cases that were long-term residents in the plateau to provide solid evidence to support the causal relation between PFO and brain ischemia lesion or cryptogenic stroke. METHODS: Long-term residents with young age from Qinghai Plateau were recruited and separated by PFO positivity. Brain MRI was used to image 100 PFO positive cases and 100 healthy controls. The diameter of PFO was measured by echocardiography. The location, number and anterior/posterior circulation of ischemia lesions were also evaluated. The correlation between PFO (including positivity and diameter) and brain ischemia lesion (including positivity and other characteristics) was analyzed by chi-square test. Further, the chi-square test for the trend test was used to analyze the linear correlation between these groups. RESULTS: We found a strong correlation between the positivity of PFO and brain ischemia lesion, with 71% of PFO cases showing the presence of brain ischemia lesions, and only 19% for healthy controls (p < 0.001). The diameter of PFO is strongly and linearly correlated with the incidence rate of brain ischemia lesion (RR = 3.737 (95%CI 2.496 to 5.767). CONCLUSION: We found a convincing correlation between the positivity of PFO and brain ischemia lesion in residents of the plateau. Our findings provide another solid evidence of the direct causal relation between PFO and brain ischemia lesion.


Asunto(s)
Altitud , Isquemia Encefálica/etiología , Foramen Oval Permeable/complicaciones , Adulto , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/epidemiología , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Ecocardiografía , Femenino , Foramen Oval Permeable/diagnóstico por imagen , Foramen Oval Permeable/epidemiología , Humanos , Incidencia , Imagen por Resonancia Magnética , Masculino , Tibet
19.
Mar Drugs ; 19(6)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205300

RESUMEN

Four new chromones, phomochromenones D-G (1-4), along with four known analogues, diaporchromone A (5), diaporchromanone C (6), diaporchromanone D (7), and phomochromenone C (8), were isolated from the culture of Phomopsis asparagi DHS-48 from Chinese mangrove Rhizophora mangle. Their structures were elucidated on the basis of comprehensive spectroscopic analysis. The absolute configurations of 1 and 4 were assigned on the basis of experimental and calculated electronic circular dichroism (ECD) data, and those of enantiomers 2 and 3 were determined by a modified Mosher's method and basic hydrolysis. To the best of our knowledge, phomochromenones D-F (1-4) possessing a 3-substituted-chroman-4-one skeleton are rarely found in natural sources. Diaporchromone A (5) showed moderate to weak immunosuppressive activity against T and/or B lymphocyte cells with IC50 of 34 µM and 117 µM.


Asunto(s)
Productos Biológicos , Cromonas , Inmunosupresores , Phomopsis/química , Rhizophoraceae/microbiología , Animales , Linfocitos B/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Cromonas/química , Cromonas/aislamiento & purificación , Cromonas/farmacología , Femenino , Inmunosupresores/química , Inmunosupresores/aislamiento & purificación , Inmunosupresores/farmacología , Ratones , Ratones Endogámicos BALB C , Linfocitos T/efectos de los fármacos
20.
BMC Bioinformatics ; 21(1): 395, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887543

RESUMEN

BACKGROUND: Neurons are the basic structural unit of the brain, and their morphology is a key determinant of their classification. The morphology of a neuronal circuit is a fundamental component in neuron modeling. Recently, single-neuron morphologies of the whole brain have been used in many studies. The correctness and completeness of semimanually traced neuronal morphology are credible. However, there are some inaccuracies in semimanual tracing results. The distance between consecutive nodes marked by humans is very long, spanning multiple voxels. On the other hand, the nodes are marked around the centerline of the neuronal fiber, not on the centerline. Although these inaccuracies do not seriously affect the projection patterns that these studies focus on, they reduce the accuracy of the traced neuronal skeletons. These small inaccuracies will introduce deviations into subsequent studies that are based on neuronal morphology files. RESULTS: We propose a neuronal digital skeleton optimization method to evaluate and make fine adjustments to a digital skeleton after neuron tracing. Provided that the neuronal fiber shape is smooth and continuous, we describe its physical properties according to two shape restrictions. One restriction is designed based on the grayscale image, and the other is designed based on geometry. These two restrictions are designed to finely adjust the digital skeleton points to the neuronal fiber centerline. With this method, we design the three-dimensional shape restriction workflow of neuronal skeleton adjustment computation. The performance of the proposed method has been quantitatively evaluated using synthetic and real neuronal image data. The results show that our method can reduce the difference between the traced neuronal skeleton and the centerline of the neuronal fiber. Furthermore, morphology metrics such as the neuronal fiber length and radius become more precise. CONCLUSIONS: This method can improve the accuracy of a neuronal digital skeleton based on traced results. The greater the accuracy of the digital skeletons that are acquired, the more precise the neuronal morphologies that are analyzed will be.


Asunto(s)
Imagenología Tridimensional/métodos , Neuronas/fisiología , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA