Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomed Eng Online ; 20(1): 25, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750406

RESUMEN

BACKGROUND: Electrical pulse stimulations have been applied in brain for treating certain diseases such as movement disorders. High-frequency stimulations (HFS) of biphasic pulses have been used in clinic stimulations, such as deep brain stimulation (DBS), to minimize the risk of tissue damages caused by the electrical stimulations. However, HFS sequences of monophasic pulses have often been used in animal experiments for studying neuronal responses to the stimulations. It is not clear yet what the differences of the neuronal responses to the HFS of monophasic pulses from the HFS of biphasic pulses are. METHODS: To investigate the neuronal responses to the two types of pulses, orthodromic-HFS (O-HFS) and antidromic-HFS (A-HFS) of biphasic and monophasic pulses (1-min) were delivered by bipolar electrodes, respectively, to the Schaffer collaterals (i.e., afferent fibers) and the alveus fibers (i.e., efferent fibers) of the rat hippocampal CA1 region in vivo. Evoked population spikes of CA1 pyramidal neurons to the HFSs were recorded in the CA1 region. In addition, single pulses of antidromic- and orthodromic-test stimuli were applied before and after HFSs to evaluate the baseline and the recovery of neuronal activity, respectively. RESULTS: Spreading depression (SD) appeared during sequences of 200-Hz monophasic O-HFS with a high incidence (4/5), but did not appear during corresponding 200-Hz biphasic O-HFS (0/6). A preceding burst of population spikes appeared before the SD waveforms. Then, the SD propagated slowly, silenced neuronal firing temporarily and resulted in partial recovery of orthodromically evoked population spikes (OPS) after the end of O-HFS. No SD events appeared during the O-HFS with a lower frequency of 100 Hz of monophasic or biphasic pulses (0/5 and 0/6, respectively), neither during the A-HFS of 200-Hz pulses (0/9). The antidromically evoked population spikes (APS) after 200-Hz biphasic A-HFS recovered to baseline level within ~ 2 min. However, the APS only recovered partially after the 200-Hz A-HFS of monophasic pulses. CONCLUSIONS: The O-HFS with a higher frequency of monophasic pulses can induce the abnormal neuron activity of SD and the A-HFS of monophasic pulses can cause a persisting attenuation of neuronal excitability, indicating neuronal damages caused by monophasic stimulations in brain tissues. The results provide guidance for proper stimulation protocols in clinic and animal experiments.


Asunto(s)
Potenciales de Acción , Región CA1 Hipocampal/fisiología , Estimulación Eléctrica , Electrodos , Células Piramidales/fisiología , Animales , Artefactos , Axones , Estimulación Encefálica Profunda , Masculino , Ratas , Ratas Sprague-Dawley
2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(6): 1144-1153, 2021 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-34970898

RESUMEN

Currently, commercial devices for electrical neural stimulations can only provide fixed stimulation paradigms with preset constant parameters, while the development of new stimulation paradigms with time-varying parameters has emerged as one of the important research directions for expanding clinical applications. To facilitate the performance of electrical stimulation paradigms with time-varying parameters in animal experiments, the present study developed a well-integrated stimulation system to output various pulse sequences by designing a LabVIEW software to control a general data acquisition card and an electrical stimulus isolator. The system was able to generate pulse sequences with inter-pulse-intervals (IPI) randomly varying in real time with specific distributions such as uniform distribution, normal distribution, gamma distribution and Poisson distribution. It was also able to generate pulse sequences with arbitrary time-varying IPIs. In addition, the pulse parameters, including pulse amplitude, pulse width, interphase delay of biphasic pulse and duration of pulse sequence, were adjustable. The results of performance tests of the stimulation system showed that the errors of the parameters of pulse sequences output by the system were all less than 1%. By utilizing the stimulation system, pulse sequences with IPI randomly varying in the range of 5~10 ms were generated and applied in rat hippocampal regions for animal experiments. The experimental results showed that, even with a same mean pulse frequency of ~130 Hz, for neuronal populations, the excitatory effect of stimulations with randomly varying IPIs was significantly greater than the effect of stimulations with fixed IPIs. In conclusion, the stimulation system designed here may provide a useful tool for the researches and the development of new paradigms of neural electrical stimulations.


Asunto(s)
Neuronas , Animales , Estimulación Eléctrica , Ratas
3.
J Integr Neurosci ; 19(3): 413-420, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33070519

RESUMEN

Electrical stimulation in the brain is an emerging therapy for treating a wide range of neurological disorders. Although electrical pulses are commonly used in the clinic, other electrical waveforms such as sinusoidal-waves have been investigated to improve the therapeutic efficacy, to reduce the risk of tissue damage induced by stimulation, and to decrease the consumption of electrical energy. However, the effects of sinusoidal stimulation on neuronal activity are still unclear. In the present study, we investigated the neuronal responses to the stimulation of 50-Hz sinusoidal-waves applied on the afferent fibers of the neurons in the hippocampal CA1 region of Sprague-Dawley rat in vivo. Results show that the stimulation increased the firing rate of both pyramidal neurons and interneurons in the downstream region of stimulation. Also, the stimulation eliminated the original theta rhythms (2-5 Hz) in the single-unit activity of the two types of neurons and entrained these neurons to fire at the stimulation rhythm. These results provide new clues for the mechanisms of brain stimulation to suppress the pathological rhythms in the neuronal activity, and for the application of sinusoidal waveforms in brain stimulation therapy.


Asunto(s)
Vías Aferentes/fisiología , Región CA1 Hipocampal/fisiología , Estimulación Eléctrica/métodos , Neuronas/fisiología , Potenciales de Acción , Animales , Axones/fisiología , Masculino , Ratas Sprague-Dawley
4.
Biomed Eng Online ; 18(1): 79, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337402

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) has a good prospect for treating many brain diseases. Recent studies have shown that axonal activation induced by pulse stimulations may play an important role in DBS therapies through wide projections of axonal fibers. However, it is undetermined whether the downstream neurons are inhibited or excited by axonal stimulation. The present study addressed the question in rat hippocampus by in vivo experiments. METHODS: Pulse stimulations with different frequencies (10-400 Hz) were applied to the Schaffer collateral, the afferent fiber of hippocampal CA1 region in anaesthetized rats. Single-unit spikes of interneurons and pyramidal cells in the downstream region of stimulation were recorded and evaluated. RESULTS: Stimulations with a lower frequency (10 or 20 Hz) did not change the firing rates of interneurons but decreased the firing rates of pyramidal cells (the principal neurons) significantly. The phase-locked firing of interneurons during these stimulations might increase the efficacy of GABAergic inhibitions on the principal neurons. However, stimulations with a higher frequency (100-400 Hz) increased the firing rates of both types of the neurons significantly. In addition, the increases of interneurons' firing were greater than the increases of pyramidal cells. Presumably, increase of direct excitation from afferent impulses together with failure of GABAergic inhibition might result in the increase of pyramidal cells' firing by a higher stimulation frequency. Furthermore, silent periods appeared immediately following the cessation of stimulations, indicating a full control of the neuronal firing by the stimulation pulses during axonal stimulation. Furthermore longer silent periods were associated with higher stimulation frequencies. CONCLUSIONS: Low-frequency (10-20 Hz) and high-frequency (100-400 Hz) stimulations of afferent axonal fibers exerted opposite effects on principal neurons in rat hippocampus CA1. These results provide new information for advancing deep brain stimulation to treat different brain disorders.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Hipocampo/citología , Neuronas/citología , Animales , Axones/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
5.
J Integr Neurosci ; 18(1): 33-41, 2019 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31091846

RESUMEN

Deep brain stimulation is an emerging treatment for brain disorders. However, the mechanisms of high-frequency brain stimulation are unclear. Recent studies have suggested that high-frequency stimulation might produce therapeutic effects by eliminating pathological rhythms in neuronal firing. To test the hypothesis, the present study investigated whether stimulation of axonal afferent fibers might alter firing rhythms of downstream neurons in in-vivo experiments with Sprague-Dawley rats. Stimulation trains of 100 Hz with one minute duration were applied to the Schaffer collaterals of hippocampus Area CA1 in anaesthetized rats. Spikes of single interneurons and pyramidal neurons in the downstream region were analyzed. The spike rhythms before, during, and after the stimulations were evaluated by analyzing the power spectrum density of autocorrelograms of the spiking sequences. The rhythms of local field potentials were also evaluated by power spectrum density. During baseline recordings, theta rhythms were obvious in the spiking sequences of both types of neuron and in the local field potentials of the stratum radiatum. However, these theta rhythms were all suppressed significantly during the stimulations. Additionally, the results of Pearson's correlation analysis showed that 20-30% variation in the theta rhythms of neuronal firing could be explained by changes of the theta rhythms in local field potentials. High-frequency axonal stimulation might prevent the original rhythmic excitation in afferent fibers and generate new excitation by stimulation pulses per se, thereby suppressing the theta rhythms of individual neuron firing and of local field potentials in the region downstream from stimulation. The results provide new evidence to support the hypothesis that high-frequency stimulation can alter the firing rhythms of neurons, which may underlie the therapeutic effects of deep brain stimulation.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Estimulación Eléctrica , Interneuronas/fisiología , Neuronas Aferentes/fisiología , Células Piramidales/fisiología , Animales , Región CA1 Hipocampal/fisiología , Estimulación Eléctrica/métodos , Masculino , Ratas Sprague-Dawley , Ritmo Teta/fisiología
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(2): 177-182, 2019 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-31016932

RESUMEN

Deep brain stimulation (DBS), which usually utilizes high frequency stimulation (HFS) of electrical pulses, is effective for treating many brain disorders in clinic. Studying the dynamic response of downstream neurons to HFS and its time relationship with stimulus pulses can reveal important mechanisms of DBS and advance the development of new stimulation modes (e.g., closed-loop DBS). To exhibit the dynamic neuronal firing and its relationship with stimuli, we designed a two-dimensional raster plot to visualize neuronal activity during HFS (especially in the initial stage of HFS). Additionally, the influence of plot resolution on the visualization effect was investigated. The method was then validated by investigating the neuronal responses to the axonal HFS in the hippocampal CA1 region of rats. Results show that the new design of raster plot is able to illustrate the dynamics of indexes (such as phase-locked relationship and latency) of single unit activity (i.e., spikes) during periodic pulse stimulations. Furthermore, the plots can intuitively show changes of neuronal firing from the baseline before stimulation to the onset dynamics during stimulation, as well as other information including the silent period of spikes immediately following the end of HFS. In addition, by adjusting resolution, the raster plot can be adapted to a large range of firing rates for clear illustration of neuronal activity. The new raster plot can illustrate more information with a clearer image than a regular raster plot, and thereby provides a useful tool for studying neuronal behaviors during high-frequency stimulations in brain.


Asunto(s)
Potenciales de Acción , Axones/fisiología , Estimulación Encefálica Profunda , Neuronas/fisiología , Animales , Región CA1 Hipocampal/fisiología , Ratas
7.
Biomed Eng Online ; 17(1): 90, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29929498

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) has shown wide clinical applications for treating various disorders of central nervous system. High frequency stimulation (HFS) of pulses with a constant intensity and a constant frequency is typically used in DBS. However, new stimulation paradigms with time-varying parameters provide a prospective direction for DBS developments. To meet the research demands for time-varying stimulations, we designed a new stimulation system with a technique of LabVIEW-based virtual instrument. METHODS: The system included a LabVIEW program, a NI data acquisition card, and an analog stimulus isolator. The output waveforms of the system were measured to verify the time-varying parameters. Preliminary animal experiments were run by delivering the HFS sequences with time-varying parameters to the hippocampal CA1 region of anesthetized rats. RESULTS: Verification results showed that the stimulation system was able to generate pulse sequences with ramped intensity and hyperbolic frequency accurately. Application of the time-varying HFS sequences to the axons of pyramidal cells in the hippocampal CA1 region resulted in neuronal responses different from those induced by HFS with constant parameters. The results indicated important modulations of time-varying stimulations to the neuronal activity that could prevent the stimulation from inducing over-synchronized firing of population neurons. CONCLUSIONS: The stimulation system provides a useful technique for investigating diverse stimulation paradigms for the development of new DBS treatments.


Asunto(s)
Encéfalo , Estimulación Encefálica Profunda/métodos , Animales , Estimulación Encefálica Profunda/instrumentación , Diseño de Equipo , Hipocampo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(1): 1-7, 2018 02 25.
Artículo en Zh | MEDLINE | ID: mdl-29745593

RESUMEN

Deep brain stimulation (DBS) has been successfully used to treat a variety of brain diseases in clinic. Recent investigations have suggested that high frequency stimulation (HFS) of electrical pulses used by DBS might change pathological rhythms in action potential firing of neurons, which may be one of the important mechanisms of DBS therapy. However, experimental data are required to confirm the hypothesis. In the present study, 1 min of 100 Hz HFS was applied to the Schaffer collaterals of hippocampal CA1 region in anaesthetized rats. The changes of the rhythmic firing of action potentials from pyramidal cells and interneurons were investigated in the downstream CA1 region. The results showed that obvious θ rhythms were present in the field potential of CA1 region of the anesthetized rats. The θ rhythms were especially pronounced in the stratum radiatum. In addition, there was a phase-locking relationship between neuronal spikes and the θ rhythms. However, HFS trains significantly decreased the phase-locking values between the spikes of pyramidal cells and the θ rhythms in stratum radiatum from 0.36 ± 0.12 to 0.06 ± 0.04 ( P < 0.001, paired t-test, N = 8). The phase-locking values of interneuron spikes were also decreased significantly from 0.27 ± 0.08 to 0.09 ± 0.05 ( P < 0.01, paired t-test, N = 8). Similar changes were obtained in the phase-locking values between neuronal spikes and the θ rhythms in the pyramidal layer. These results suggested that axonal HFS could eliminate the phase-locking relationship between action potentials of neurons and θ rhythms thereby changing the rhythmic firing of downstream neurons. HFS induced conduction block in the axons might be one of the underlying mechanisms. The finding is important for further understanding the mechanisms of DBS.

9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(4): 485-492, 2017 08 25.
Artículo en Zh | MEDLINE | ID: mdl-29745543

RESUMEN

Epilepsy is characterized by abnormally synchronized firing of neuronal populations, which is presented as epileptiform spikes in neural electrical signal recordings. In order to investigate the epileptiform spikes quantitatively, we designed a new window-based algorithm to automatically detect population spikes (PS) in acute epilepsy models in rat hippocampus CA1 region, and to calculate characteristic parameters of PS. Results show that the algorithm could recognize PS waveforms directly in wideband recording signals in epilepsy models induced by 4-aminopyridine (4-AP), a potassium channel blocker, or by picrotoxin (PTX), an antagonist of γ-aminobutyric acid A-type receptor. The PS detection ratios of the two epilepsy models were 94.2%±1.6% ( n=11) and 95.9%±1.9% ( n=12), respectively. The false positive ratios were 3.5%±2.3% ( n=11) and 4.8%±2.3% ( n=12), which were significantly lower than those of the conventional threshold method. Comparisons of the PS patterns between the 4-AP model and the PTX model showed that the PS of the 4-AP model had wider waveforms and fired more dispersedly with intervals mainly in the range of 100-700 ms. The PS of the PTX model fired as Burst with a higher firing rate and with intervals mainly in the range of 2-20 ms, resulting in a larger sum of spike amplitudes per second than the 4-AP model. Thus, the synchronous firing of neuronal populations in the PTX model was more intense than that in the 4-AP model. In conclusion, the new algorithm of PS detection can correctly detect and analyze epileptiform population spikes. It provides a useful tool of data analysis for investigating the underlying mechanism of seizure generation and for evaluating new therapeutics of epilepsy.

10.
J Integr Neurosci ; 15(1): 1-17, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26490044

RESUMEN

Modulation of the rhythmic activity of local field potentials (LFP) in neuronal networks could be a mechanism of deep brain stimulation (DBS). However, exact changes of LFP during the periods of high-frequency stimulation (HFS) of DBS are unclear because of the interference of dense stimulation artifacts with high amplitudes. In the present study, we investigated LFP changes induced by HFS of afferent axons in the hippocampal CA1 region of urethane-anesthetized rats by using a proper algorithm of artifact removal. Afterward, the LFP changes in the frequency bands of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] rhythms were studied by power spectrum analysis and coherence analysis for the recorded signals collected in the pyramidal layer and in the stratum radiatum of CA1 region before, during and after 1-min long 100 and 200[Formula: see text]Hz HFS. Results showed that the power of LFP rhythms in higher-frequency band ([Formula: see text] rhythm) increased in the pyramidal layer and the power of LFP rhythms in lower-frequency bands ([Formula: see text], [Formula: see text] and [Formula: see text] rhythms) decreased in the stratum radiatum during HFS. The synchronization of [Formula: see text] rhythm decreased and the synchronization of [Formula: see text] rhythm increased during HFS in the stratum radiatum. These results suggest that axonal HFS could modulate LFP rhythms in the downstream brain areas with a plausible underlying mechanism of partial axonal blockage induced by HFS. The study provides new evidence to support the mechanism of DBS modulating rhythmic activity of neuronal populations.


Asunto(s)
Axones/fisiología , Fenómenos Biofísicos/fisiología , Región CA1 Hipocampal/citología , Estimulación Eléctrica , Potenciales Evocados/fisiología , Algoritmos , Animales , Masculino , Red Nerviosa/fisiología , Periodicidad , Ratas , Ratas Sprague-Dawley , Análisis Espectral
11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 32(1): 168-74, 2015 Feb.
Artículo en Zh | MEDLINE | ID: mdl-25997287

RESUMEN

In order to investigate the effect of deep brain stimulation on diseases such as epilepsy, we developed a closed-loop electrical stimulation system using LabVIEW virtual instrument environment and NI data acquisition card. The system was used to detect electrical signals of epileptic seizures automatically and to generate electrical stimuli. We designed a novel automatic detection algorithm of epileptic seizures by combining three features of field potentials: the amplitude, slope and coastline index. Experimental results of rat epileptic model in the hippocampal region showed that the system was able to detect epileptic seizures with an accuracy rate 91.3% and false rate 8.0%. Furthermore, the on-line high frequency electrical stimuli showed a suppression effect on seizures. In addition, the system was adaptive and flexible with multiple work modes, such as automatic and manual modes. Moreover, the simple time-domain algorithm of seizure detection guaranteed the real-time feature of the system and provided an easy-to-use equipment for the experiment researches of epilepsy control by electrical stimulation.


Asunto(s)
Estimulación Encefálica Profunda/instrumentación , Epilepsia/diagnóstico , Convulsiones/diagnóstico , Algoritmos , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Diseño de Equipo , Ratas
12.
J Neural Eng ; 21(2)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38530299

RESUMEN

Objective. The development of electrical pulse stimulations in brain, including deep brain stimulation, is promising for treating various brain diseases. However, the mechanisms of brain stimulations are not yet fully understood. Previous studies have shown that the commonly used high-frequency stimulation (HFS) can increase the firing of neurons and modulate the pattern of neuronal firing. Because the generation of neuronal firing in brain is a nonlinear process, investigating the characteristics of nonlinear dynamics induced by HFS could be helpful to reveal more mechanisms of brain stimulations. The aim of present study is to investigate the fractal properties in the neuronal firing generated by HFS.Approach. HFS pulse sequences with a constant frequency 100 Hz were applied in the afferent fiber tracts of rat hippocampal CA1 region. Unit spikes of both the pyramidal cells and the interneurons in the downstream area of stimulations were recorded. Two fractal indexes-the Fano factor and Hurst exponent were calculated to evaluate the changes of long-range temporal correlations (LRTCs), a typical characteristic of fractal process, in spike sequences of neuronal firing.Mainresults. Neuronal firing at both baseline and during HFS exhibited LRTCs over multiple time scales. In addition, the LRTCs significantly increased during HFS, which was confirmed by simulation data of both randomly shuffled sequences and surrogate sequences.Conclusion. The purely periodic stimulation of HFS pulses, a non-fractal process without LRTCs, can increase rather than decrease the LRTCs in neuronal firing.Significance. The finding provides new nonlinear mechanisms of brain stimulation and suggests that LRTCs could be a new biomarker to evaluate the nonlinear effects of HFS.


Asunto(s)
Hipocampo , Neuronas , Ratas , Animales , Ratas Sprague-Dawley , Neuronas/fisiología , Hipocampo/fisiología , Axones/fisiología , Región CA1 Hipocampal/fisiología , Estimulación Eléctrica/métodos
13.
J Neural Eng ; 20(5)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37703869

RESUMEN

Background. Electrical neuromodulation therapies commonly utilize high-frequency stimulations (HFS) of biphasic-pulses to treat neurological disorders. The biphasic pulse consists of a leading cathodic-phase to activate neurons and a lagging anodic-phase to balance electrical charges. Because both monophasic cathodic- and anodic-pulses can depolarize neuronal membranes, splitting biphasic-pulses into alternate cathodic- and anodic-pulses could be a feasible strategy to improve stimulation efficiency.Objective. We speculated that neurons in the volume initially activated by both polarity pulses could change to be activated only by anodic-pulses during sustained HFS of alternate monophasic-pulses. To verify the hypothesis, we investigated the interactions of the monophasic pulses during HFS and revealed possible underlying mechanisms.Approach. Different types of pulse stimulations were applied at the alvear fibers (i.e. the axons of CA1 pyramidal neurons) to antidromically activate the neuronal cell bodies in the hippocampal CA1 region of anesthetized ratsin-vivo. Sequences of antidromic HFS (A-HFS) were applied with alternate monophasic-pulses or biphasic-pulses. The pulse frequency in the A-HFS sequences was 50 or 100 Hz. The A-HFS duration was 120 s. The amplitude of antidromically-evoked population spike was measured to evaluate the neuronal firing induced by each pulse. A computational model of axon was used to explore the possible mechanisms of neuronal modulations. The changes of model variables during sustained A-HFS were analyzed.Main results. In rat experiments, with a same pulse intensity, the activation volume of a cathodic-pulse was greater than that of an anodic-pulse. In paired-pulse tests, a preceding cathodic-pulse was able to prevent a following anodic-pulse from activating neurons due to refractory period. This indicated that the activation volume of a cathodic-pulse covered that of an anodic-pulse. However, during sustained A-HFS of alternate monophasic-pulses, the anodic-pulses were able to prevail over the cathodic-pulses in activating neurons in the overlapped activation volume. Model simulation results show the mechanisms of the activation failures of cathodic-pulses. They include the excessive membrane depolarization caused by an accumulation of potassium ions, the obstacle of hyperpolarization in the conduction pathway and the interactions from anodic-pulses.Significance. The study firstly showed the domination of anodic-pulses over cathodic-pulses in their competitions to activate neurons during sustained HFS. The finding provides new clues for designing HFS paradigms to improve the efficiency of neuromodulation therapies.


Asunto(s)
Axones , Neuronas , Animales , Ratas , Electrodos , Región CA1 Hipocampal , Simulación por Computador
14.
J Neural Eng ; 20(1)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36599161

RESUMEN

Background. High-frequency stimulation (HFS) sequences of electrical pulses are commonly utilized in many types of neuromodulation therapies. The temporal pattern of pulse sequences characterized by varying inter-pulse intervals (IPI) has emerged as an adjustable dimension to generate diverse effects of stimulations to meet the needs for developing the therapies.Objective:To explore the hypothesis that a simple manipulation of IPI by inserting a pulse in HFS with a constant IPI can substantially change the neuronal responses.Approach. Antidromic HFS (A-HFS) and orthodromic HFS (O-HFS) sequences were respectively applied at the alveus (the efferent axons) and the Schaffer collaterals (the afferent axons) of hippocampal CA1 region in anesthetized ratsin-vivo. The HFS sequences lasted 120 s with a pulse frequency of 100 Hz and an IPI of 10 ms. In the late steady period (60-120 s) of the HFS, additional pulses were inserted into the original pulse sequences to investigate the alterations of neuronal responses to the changes in IPI. The amplitudes and latencies of antidromic/orthodromic population spikes (APS/OPS) evoked by pulses were measured to evaluate the alterations of the evoked firing of CA1 pyramidal neurons caused by the pulse insertions.Main Results. During the steady period of A-HFS at efferent axons, the evoked APSs were suppressed due to intermittent axonal block. Under this situation, inserting a pulse to shorten an IPI was able to redistribute the following neuronal firing thereby generating an episode of oscillation in the evoked APS sequence including APSs with significantly increased and decreased amplitudes. Also, during the steady period of O-HFS without obvious OPS, a pulse insertion was able to generate a large OPS, indicating a synchronized firing of a large population of post-synaptic neurons induced by a putative redistribution of activations at the afferent axons under O-HFS.Significance. This study firstly showed that under the situation of HFS-induced axonal block, changing an IPI by a single-pulse insertion can substantially redistribute the evoked neuronal responses to increase synchronized firing of neuronal populations during both antidromic and O-HFS with a constant IPI originally. The finding provides a potential way to enhance the HFS action on neuronal networks without losing some other functions of HFS such as generating axonal block.


Asunto(s)
Hipocampo , Neuronas , Ratas , Animales , Ratas Sprague-Dawley , Potenciales de Acción/fisiología , Neuronas/fisiología , Hipocampo/fisiología , Axones/fisiología , Estimulación Eléctrica/métodos
15.
Front Neurosci ; 16: 881426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757541

RESUMEN

High-frequency stimulation (HFS) of electrical pulses has been used to treat certain neurological diseases in brain with commonly utilized effects within stimulation periods. Post-stimulation effects after the end of HFS may also have functions but are lack of attention. To investigate the post-stimulation effects of HFS, we performed experiments in the rat hippocampal CA1 region in vivo. Sequences of 1-min antidromic-HFS (A-HFS) were applied at the alveus fibers. To evaluate the excitability of the neurons, separated orthodromic-tests (O-test) of paired pulses were applied at the Schaffer collaterals in the period of baseline, during late period of A-HFS, and following A-HFS. The evoked potentials of A-HFS pulses and O-test pulses were recorded at the stratum pyramidale and the stratum radiatum of CA1 region by an electrode array. The results showed that the antidromic population spikes (APS) evoked by the A-HFS pulses persisted through the entire 1-min period of 100 Hz A-HFS, though the APS amplitudes decreased significantly from the initial value of 9.9 ± 3.3 mV to the end value of 1.6 ± 0.60 mV. However, following the cessation of A-HFS, a silent period without neuronal firing appeared before the firing gradually recovered to the baseline level. The mean lengths of both silent period and recovery period of pyramidal cells (21.9 ± 22.9 and 172.8 ± 91.6 s) were significantly longer than those of interneurons (11.2 ± 8.9 and 45.6 ± 35.9 s). Furthermore, the orthodromic population spikes (OPS) and the field excitatory postsynaptic potentials (fEPSP) evoked by O-tests at ∼15 s following A-HFS decreased significantly, indicating the excitability of pyramidal cells decreased. In addition, when the pulse frequency of A-HFS was increased to 200, 400, and 800 Hz, the suppression of neuronal activity following A-HFS decreased rather than increased. These results indicated that the neurons with axons directly under HFS can generate a post-stimulation suppression of their excitability that may be due to an antidromic invasion of axonal A-HFS to somata and dendrites. The finding provides new clues to utilize post-stimulation effects generated in the intervals to design intermittent stimulations, such as closed-loop or adaptive stimulations.

16.
Front Neurosci ; 16: 823423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368280

RESUMEN

Electrical pulses have been promisingly utilized in neural stimulations to treat various diseases. Usually, charge-balanced biphasic pulses are applied in the clinic to eliminate the possible side effects caused by charge accumulations. Because of its reversal action to the preceding cathodic phase, the subsequent anodic phase has been commonly considered to lower the activation efficiency of biphasic pulses. However, an anodic pulse itself can also activate axons with its "virtual cathode" effect. Therefore, we hypothesized that the anodic phase of a biphasic pulse could facilitate neuronal activation in some circumstances. To verify the hypothesis, we compared the activation efficiencies of cathodic pulse, biphasic pulse, and anodic pulse applied in both monopolar and bipolar modes in the axonal stimulation of alveus in rat hippocampal CA1 region in vivo. The antidromically evoked population spikes (APS) were recorded and used to evaluate the amount of integrated firing of pyramidal neurons induced by pulse stimulations. We also used a computational model to investigate the pulse effects on axons at various distances from the stimulation electrode. The experimental results showed that, with a small pulse intensity, a cathodic pulse recruited more neurons to fire than a biphasic pulse. However, the situation was reversed with an increased pulse intensity. In addition, setting an inter-phase gap of 100 µs was able to increase the activation efficiency of a biphasic pulse to exceed a cathodic pulse even with a relatively small pulse intensity. Furthermore, the latency of APS evoked by a cathodic pulse was always longer than that of APS evoked by a biphasic pulse, indicating different initial sites of the neuronal firing evoked by the different types of pulses. The computational results of axon modeling showed that the subsequent anodic phase was able to relieve the hyperpolarization block in the flanking regions generated by the preceding cathodic phase, thereby increasing rather than decreasing the activation efficiency of a biphasic pulse with a relatively great intensity. These results of both rat experiments and computational modeling firstly reveal a facilitation rather than an attenuation effect of the anodic phase on biphasic-pulse stimulations, which provides important information for designing electrical stimulations for neural therapies.

17.
IEEE Trans Biomed Eng ; 69(9): 2893-2904, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35254971

RESUMEN

OBJECTIVE: The bifurcation of neuronal firing is one of important nonlinear phenomena in the nervous system and is characterized by a significant change in the rate or temporal pattern of neuronal firing on responding to a small disturbance from external inputs. Previous studies have reported firing bifurcations for individual neurons, not for a population of neurons. We hypothesized that the integrated firing of a neuronal population could also show a bifurcation behavior that should be important in certain situations such as deep brain stimulations. The hypothesis was verified by experiments of rat hippocampus in vivo. METHODS: Stimulation sequences of paired-pulses with two different inter-pulse-intervals (IPIs) or with two different pulse intensities were applied on the alveus of hippocampal CA1 region in anaesthetized rats. The amplitude and area of antidromic population spike (APS) were used as indices to evaluate the differences in the responses of neuronal population to the different pulses in stimulations. RESULTS: During sustained paired-pulse stimulations with a high mean pulse frequency such as ∼130 Hz, a small difference of only a few percent in the two IPIs or in the two intensities was able to generate a sequence of evoked APSs with a substantial bifurcation in their amplitudes and areas. CONCLUSION: Small differences in the excitatory inputs can cause nonlinearly enlarged differences in the induced firing of neuronal populations. SIGNIFICANCE: The novel dynamics and bifurcation of neuronal responses to electrical stimulations provide important clues for developing new paradigms to extend neural stimulations to treat more diseases.


Asunto(s)
Hipocampo , Neuronas , Animales , Región CA1 Hipocampal , Estimulación Eléctrica , Hipocampo/fisiología , Ratas
18.
J Neural Eng ; 19(1)2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35114653

RESUMEN

Objective.Charge-balanced biphasic-pulses are commonly used in neural stimulations to prevent possible damages caused by charge accumulations. The lagging anodic-phases of biphasic-pulses may decrease the activation efficiency of stimulations by counteracting the depolarization effect of the leading cathodic-phases. However, a monophasic anodic-pulse alone can itself activate neurons by depolarizing neuronal membrane through a mechanism of virtual cathode. This study aimed to verify the hypothesis that the anodic-phases/pulses in charge-balanced stimulations could play an activation role during sustained high-frequency stimulations (HFSs).Approach.Two types of antidromic HFS (A-HFS) were applied on the alveus of hippocampal CA1 region of anesthetized rats: monophasic-pulse A-HFS of alternate opposite pulses and biphasic-pulse A-HFS with the same frequency of 100 or 200 Hz. The antidromically-evoked population spike was used as a biomarker to evaluate the activation effects of A-HFS pulses.Main results.Despite a significant difference in the initial abilities of anodic- and cathodic-pulses to activate neurons, an anodic-pulse was able to induce similar amount of neuronal firing as a cathodic-pulse during sustained monophasic-pulse A-HFS. Additionally, the amount of neuronal firing induced by the monophasic-pulse A-HFS was similar to that induced by the biphasic-pulse A-HFS consuming a double amount of electrical energy. Furthermore, the alternate cathodic- and anodic-pulses respectively activated different sub-populations of neurons during steady A-HFS.Significance.The anodic-phases/pulses in charge-balanced HFS at axons can play an activation role in addition to a role of charge balance. The study provides important information for designing charge-balanced stimulations and reveals new mechanisms of neural stimulations.


Asunto(s)
Axones , Neuronas , Animales , Axones/fisiología , Región CA1 Hipocampal/fisiología , Estimulación Eléctrica/métodos , Electrodos , Hipocampo/fisiología , Neuronas/fisiología , Ratas
19.
Brain Sci ; 12(10)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36291284

RESUMEN

Stimulation-induced inhibition is one of the important effects of high-frequency stimulation (HFS) utilized by the therapy of deep brain stimulation (DBS) to treat certain neurological diseases such as epilepsy. In order to explore the stimulation sites to induce inhibition, this study investigated the activation effect of HFS of efferent fibers on the local inhibitory interneurons (IN). Antidromic HFS (A-HFS) of 100 Hz pulses was applied for 2 min at the efferent fibers-the alveus (i.e., the axons of pyramidal neurons) in the hippocampal CA1 region of anesthetized rats. Single unit spikes of INs in local feedback inhibitory circuits, as well as antidromically-evoked population spikes (APS) of pyramidal neurons, were recorded simultaneously in the CA1 region upstream of the stimulation site. Results showed that during the late 60 s of A-HFS, with a substantial suppression in APS amplitudes, the mean firing rate of INs was still significantly greater than the baseline level even when the A-HFS was applied with a weak pulse intensity of 0.08 ± 0.05 mA (9 rats). With a strong pulse intensity of 0.33 ± 0.08 mA (10 rats), the mean firing rate of INs was able to keep at a high level till the end of A-HFS. In addition, the mean latency of IN firing was significantly prolonged during the sustained A-HFS, indicating that alterations had been generated in the pathway to activate INs by the stimulations at efferent fibers. The results suggested that HFS at efferent fibers with various stimulation intensities can modulate the firing of local inhibitory neurons. The finding provides new clues for selecting stimulation sites to enhance inhibition in neural circuits by DBS.

20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 28(5): 1007-13, 2011 Oct.
Artículo en Zh | MEDLINE | ID: mdl-22097273

RESUMEN

In order to extract more information from extracellular action potential (EAP) of neurons recorded deep in the brain tissue, we established simulation models of various pyramidal neurons in the hippocampal CA1 region and investigated the effects of dendrite currents, cell morphology and ion mechanisms on the formation of EAP waveforms. The results show that dendrite currents have significant effects on the EAP at the locations far from cell body, but not on those near cell body. The differences of shape of various pyramidal neurons result in large changes in the EAP amplitudes. However, the shapes of these different EAP are very similar. Ion mechanisms, such as calcium channels, have little effect on EAP waveforms. These results provide important information for experimental EAP recordings, EAP data analysis, and developing new methods to extract more neuronal data from EAP.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/citología , Neuronas/fisiología , Células Piramidales/fisiopatología , Animales , Simulación por Computador , Hipocampo/fisiopatología , Modelos Biológicos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA