Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(7): e1010673, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35788752

RESUMEN

The limited development of broadly neutralizing antibodies (BnAbs) during HIV infection is classically attributed to an inadequate B-cell help brought by functionally impaired T follicular helper (Tfh) cells. However, the determinants of Tfh-cell functional impairment and the signals contributing to this condition remain elusive. In the present study, we showed that PD-L1 is incorporated within HIV virions through an active mechanism involving p17 HIV matrix protein. We subsequently showed that in vitro produced PD-L1high but not PD-L1low HIV virions, significantly reduced Tfh-cell proliferation and IL-21 production, ultimately leading to a decreased of IgG1 secretion from GC B cells. Interestingly, Tfh-cell functions were fully restored in presence of anti-PD-L1/2 blocking mAbs treatment, demonstrating that the incorporated PD-L1 proteins were functionally active. Taken together, the present study unveils an immunovirological mechanism by which HIV specifically exploits the regulatory potential of PD-L1 to suppress the immune system during the course of HIV infection.


Asunto(s)
Infecciones por VIH , Linfocitos T Colaboradores-Inductores , Linfocitos B , Humanos , Células T Auxiliares Foliculares , Virión
2.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903232

RESUMEN

The development of follicular helper CD4 T (TFH) cells is a dynamic process resulting in a heterogenous pool of TFH subsets. However, the cellular and molecular determinants of this heterogeneity and the possible mechanistic links between them is not clear. We found that human TFH differentiation is associated with significant changes in phenotypic, chemokine, functional, metabolic and transcriptional profile. Furthermore, this differentiation was associated with distinct positioning to follicular proliferating B cells. Single-cell T cell receptor (TCR) clonotype analysis indicated the transitioning toward PD-1hiCD57hi phenotype. Furthermore, the differentiation of TFH cells was associated with significant reduction in TCR level and drastic changes in immunological synapse formation. TFH synapse lacks a tight cSMAC (central supra molecular activation Cluster) but displays the TCR in peripheral microclusters, which are potentially advantageous in the ability of germinal center (GC) B cells to receive necessary help. Our data reveal significant aspects of human TFH heterogeneity and suggest that the PD-1hiCD57hi TFH cells, in particular, are endowed with distinctive programming and spatial positioning for optimal GC B cell help.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/inmunología , Receptores de Antígenos de Linfocitos T/genética , Células T Auxiliares Foliculares/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos CD57/genética , Comunicación Celular/inmunología , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Quimiocinas/genética , Centro Germinal/inmunología , Centro Germinal/metabolismo , Humanos , Sinapsis Inmunológicas/genética , Sinapsis Inmunológicas/inmunología , Activación de Linfocitos/inmunología , Fenotipo , Receptor de Muerte Celular Programada 1/genética , Receptores de Antígenos de Linfocitos T/inmunología , Células T Auxiliares Foliculares/metabolismo , Subgrupos de Linfocitos T/inmunología
3.
J Clin Immunol ; 43(5): 882-893, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36943669

RESUMEN

PURPOSE: Following a severe COVID-19 infection, a proportion of individuals develop prolonged symptoms. We investigated the immunological dysfunction that underlies the persistence of symptoms months after the resolution of acute COVID-19. METHODS: We analyzed cytokines, cell phenotypes, SARS-CoV-2 spike-specific and neutralizing antibodies, and whole blood gene expression profiles in convalescent severe COVID-19 patients 1, 3, and 6 months following hospital discharge. RESULTS: We observed persistent abnormalities until month 6 marked by (i) high serum levels of monocyte/macrophage and endothelial activation markers, chemotaxis, and hematopoietic cytokines; (ii) a high frequency of central memory CD4+ and effector CD8+ T cells; (iii) a decrease in anti-SARS-CoV-2 spike and neutralizing antibodies; and (iv) an upregulation of genes related to platelet, neutrophil activation, erythrocytes, myeloid cell differentiation, and RUNX1 signaling. We identified a "core gene signature" associated with a history of thrombotic events, with upregulation of a set of genes involved in neutrophil activation, platelet, hematopoiesis, and blood coagulation. CONCLUSION: The lack of restoration of gene expression to a normal profile after up to 6 months of follow-up, even in asymptomatic patients who experienced severe COVID-19, signals the need to carefully extend their clinical follow-up and propose preventive measures.


Asunto(s)
COVID-19 , Trombosis , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Activación Neutrófila , Anticuerpos Neutralizantes , Trombosis/etiología , Citocinas , Anticuerpos Antivirales
4.
Immunol Rev ; 292(1): 149-163, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31883174

RESUMEN

The T-cell response is central in the adaptive immune-mediated elimination of pathogen-infected and/or cancer cells. This activated T-cell response can inflict an overwhelming degree of damage to the targeted cells, which in most instances leads to the control and elimination of foreign invaders. However, in conditions of chronic infection, persistent exposure of T cells to high levels of antigen results in a severe T-cell dysfunctional state called exhaustion. T-cell exhaustion leads to a suboptimal immune-mediated control of multiple viral infections including the human immunodeficiency virus (HIV). In this review, we will discuss the role of T-cell exhaustion in HIV disease progression, the long-term defect of T-cell function even in aviremic patients on antiretroviral therapy (ART), the role of exhaustion-specific markers in maintaining a reservoir of latently infected cells, and exploiting these markers in HIV cure strategies.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Progresión de la Enfermedad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Activación de Linfocitos/inmunología
5.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33144321

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses to the spike (S) protein monomer, S protein native trimeric form, or the nucleocapsid (N) proteins were evaluated in cohorts of individuals with acute infection (n = 93) and in individuals enrolled in a postinfection seroprevalence population study (n = 578) in Switzerland. Commercial assays specific for the S1 monomer, for the N protein, or within a newly developed Luminex assay using the S protein trimer were found to be equally sensitive in antibody detection in the acute-infection-phase samples. Interestingly, compared to anti-S antibody responses, those against the N protein appear to wane in the postinfection cohort. Seroprevalence in a "positive patient contacts" group (n = 177) was underestimated by N protein assays by 10.9 to 32.2%, while the "randomly selected" general population group (n = 311) was reduced by up to 45% relative to the S protein assays. The overall reduction in seroprevalence targeting only anti-N antibodies for the total cohort ranged from 9.4 to 31%. Of note, the use of the S protein in its native trimer form was significantly more sensitive compared to monomeric S proteins. These results indicate that the assessment of anti-S IgG antibody responses against the native trimeric S protein should be implemented to estimate SARS-CoV-2 infections in population-based seroprevalence studies.IMPORTANCE In the present study, we have determined SARS-CoV-2-specific antibody responses in sera of acute and postinfection phase subjects. Our results indicate that antibody responses against viral S and N proteins were equally sensitive in the acute phase of infection, but that responses against N appear to wane in the postinfection phase where those against the S protein persist over time. The most sensitive serological assay in both acute and postinfection phases used the native S protein trimer as the binding antigen, which has significantly greater conformational epitopes for antibody binding compared to the S1 monomer protein used in other assays. We believe these results are extremely important in order to generate correct estimates of SARS-CoV-2 infections in the general population. Furthermore, the assessment of antibody responses against the trimeric S protein will be critical to evaluate the durability of the antibody response and for the characterization of a vaccine-induced antibody response.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , COVID-19/sangre , COVID-19/epidemiología , Femenino , Humanos , Inmunoensayo , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Fosfoproteínas/inmunología , Multimerización de Proteína , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/química , Suiza/epidemiología , Factores de Tiempo
6.
PLoS Pathog ; 16(11): e1009025, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253297

RESUMEN

The development of HIV-1 vaccines is challenged by the lack of relevant models to accurately induce human B- and T-cell responses in lymphoid organs. In humanized mice reconstituted with human hematopoietic stem cells (hu-mice), human B cell-development and function are impaired and cells fail to efficiently transition from IgM B cells to IgG B cells. Here, we found that CD40-targeted vaccination combined with CpG-B adjuvant overcomes the usual defect of human B-cell switch and maturation in hu-mice. We further dissected hu-B cell responses directed against the HIV-1 Env protein elicited by targeting Env gp140 clade C to the CD40 receptor of antigen-presenting cells. The anti-CD40.Env gp140 vaccine was injected with CpG-B in a homologous prime/boost regimen or as a boost of a NYVAC-KC pox vector encoding Env gp140 clade C. Both regimens elicited Env-specific IgG-switched memory hu-B cells at a greater magnitude in hu-mice primed with NYVAC-KC. Single-cell RNA-seq analysis showed gp140-specific hu-B cells to express polyclonal IgG1 and IgG3 isotypes and a broad Ig VH/VL repertoire, with predominant VH3 family gene usage. These cells exhibited a higher rate of somatic hypermutation than the non-specific IgG+ hu-B-cell counterpart. Both vaccine regimens induced splenic GC-like structures containing hu-B and hu-Tfh-like cells expressing PD-1 and BCL-6. We confirmed in this model that circulating ICOS+ memory hu-Tfh cells correlated with the magnitude of gp140-specific B-cell responses. Finally, the NYVAC-KC heterologous prime led to a more diverse clonal expansion of specific hu-B cells. Thus, this study shows that CD40-targeted vaccination induces human IgG production in hu-mice and provides insights for the development of a CD40-targeting vaccine to prevent HIV-1 infection in humans.


Asunto(s)
Vacunas contra el SIDA/inmunología , Antígenos CD40/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Receptor Toll-Like 9/agonistas , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Células Madre Hematopoyéticas , Humanos , Inmunoglobulina G/inmunología , Ratones , Linfocitos T/inmunología , Vacunación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
7.
PLoS Pathog ; 15(7): e1007918, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31329640

RESUMEN

T-follicular helper (Tfh) cells, co-expressing PD-1 and TIGIT, serve as a major cell reservoir for HIV-1 and are responsible for active and persistent HIV-1 transcription after prolonged antiretroviral therapy (ART). However, the precise mechanisms regulating HIV-1 transcription in lymph nodes (LNs) remain unclear. In the present study, we investigated the potential role of immune checkpoint (IC)/IC-Ligand (IC-L) interactions on HIV-1 transcription in LN-microenvironment. We show that PD-L1 (PD-1-ligand) and CD155 (TIGIT-ligand) are predominantly co-expressed on LN migratory (CD1chighCCR7+CD127+) dendritic cells (DCs), that locate predominantly in extra-follicular areas in ART treated individuals. We demonstrate that TCR-mediated HIV production is suppressed in vitro in the presence of recombinant PD-L1 or CD155 and, more importantly, when LN migratory DCs are co-cultured with PD-1+/Tfh cells. These results indicate that LN migratory DCs expressing IC-Ls may more efficiently restrict HIV-1 transcription in the extra-follicular areas and explain the persistence of HIV transcription in PD-1+/Tfh cells after prolonged ART within germinal centers.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/patogenicidad , Receptor de Muerte Celular Programada 1/metabolismo , Fármacos Anti-VIH/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Movimiento Celular/inmunología , Microambiente Celular/inmunología , Técnicas de Cocultivo , Células Dendríticas/inmunología , Células Dendríticas/virología , Centro Germinal/inmunología , Centro Germinal/virología , Infecciones por VIH/tratamiento farmacológico , VIH-1/inmunología , Interacciones Microbiota-Huesped/inmunología , Humanos , Técnicas In Vitro , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Receptores Virales/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/virología , Transcripción Genética , Virulencia
8.
BMC Biotechnol ; 19(1): 67, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31623599

RESUMEN

BACKGROUND: Lymphocyte-activation gene (LAG)3 is a 498 aa transmembrane type I protein acting as an immune inhibitory receptor. It is expressed on activated lymphocytes, natural killer cells and plasmacytoid dendritic cells. In activated lymphocytes, LAG3 expression is involved in negative control of cell activation/proliferation to ensure modulation and control of immune responses. In view of its deregulated expression in tumor-infiltrating lymphocytes, LAG3, together with the additional immune checkpoint inhibitors CTLA4 and PD1, is considered a major target in order to reverse the immunosuppression typically mounting in oncologic diseases. Since many patients still fail to respond to current immune checkpoints-based therapies, the identification of new effective immune inhibitors is a priority in the ongoing fight against cancer. RESULTS: We identified a novel human single-chain variable fragment (scFv) Ab against a conformational epitope of LAG3 by in vitro phage display technology using the recombinant antigen as a bait. This scFv (referred to as F7) was characterized in terms of binding specificity to both recombinant antigen and human LAG3-expressing cells. It was then rebuilt into an IgG format pre-optimized for clinical usage, and the resulting bivalent construct was shown to preserve its ability to bind LAG3 on human cells. Next, we analyzed the activity of the anti-LAG3 scFvF7 using two different antigen-specific CD8+ T lymphocyte clones as target cells. We proved that the reconstituted anti-LAG3 F7 Ab efficiently binds the cell membrane of both cell clones after peptide-activation. Still more significantly, we observed a striking increase in the peptide-dependent cell activation upon Ab treatment as measured in terms of IFN-γ release by both ELISA and ELISPOT assays. CONCLUSIONS: Overall, the biotechnological strategy described herein represents a guiding development model for the search of novel useful immune checkpoint inhibitors. In addition, our functional data propose a novel candidate reagent for consideration as a cancer treatment.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Glycine max/metabolismo , Biblioteca de Péptidos , Plantas Modificadas Genéticamente/metabolismo , Bacillus thuringiensis/metabolismo , Humanos , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo , Glycine max/genética
9.
J Virol ; 92(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29976671

RESUMEN

A recent study conducted in blood has proposed CD32 as the marker identifying the "elusive" HIV reservoir. We have investigated the distribution of CD32+ CD4 T cells in blood and lymph nodes (LNs) of HIV-1-uninfected subjects and viremic untreated and long-term-treated HIV-1-infected individuals and their relationship with PD-1+ CD4 T cells. The frequency of CD32+ CD4 T cells was increased in viremic compared to treated individuals in LNs, and a large proportion (up to 50%) of CD32+ cells coexpressed PD-1 and were enriched within T follicular helper (Tfh) cells. We next investigated the role of LN CD32+ CD4 T cells in the HIV reservoir. Total HIV DNA was enriched in CD32+ and PD-1+ CD4 T cells compared to CD32- and PD-1- cells in both viremic and treated individuals, but there was no difference between CD32+ and PD-1+ cells. There was no enrichment of latently infected cells with inducible HIV-1 in CD32+ versus PD-1+ cells in antiretroviral therapy (ART)-treated individuals. HIV-1 transcription was then analyzed in LN memory CD4 T cell populations sorted on the basis of CD32 and PD-1 expression. CD32+ PD-1+ CD4 T cells were significantly enriched in cell-associated HIV RNA compared to CD32- PD-1- (averages of 5.2-fold in treated individuals and 86.6-fold in viremics), CD32+ PD-1- (2.2-fold in treated individuals and 4.3-fold in viremics), and CD32- PD-1+ (2.2-fold in ART-treated individuals and 4.6-fold in viremics) cell populations. Similar levels of HIV-1 transcription were found in CD32+ PD-1- and CD32- PD-1+ CD4 T cells. Interestingly, the proportion of CD32+ and PD-1+ CD4 T cells negatively correlated with CD4 T cell counts and length of therapy. Therefore, the expression of CD32 identifies, independently of PD-1, a CD4 T cell population with persistent HIV-1 transcription and coexpression of CD32 and PD-1, the CD4 T cell population with the highest levels of HIV-1 transcription in both viremic and treated individuals.IMPORTANCE The existence of long-lived latently infected resting memory CD4 T cells represents a major obstacle to the eradication of HIV infection. Identifying cell markers defining latently infected cells containing replication-competent virus is important in order to determine the mechanisms of HIV persistence and to develop novel therapeutic strategies to cure HIV infection. We provide evidence that PD-1 and CD32 may have a complementary role in better defining CD4 T cell populations infected with HIV-1. Furthermore, CD4 T cells coexpressing CD32 and PD-1 identify a CD4 T cell population with high levels of persistent HIV-1 transcription.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/patología , VIH-1/crecimiento & desarrollo , Ganglios Linfáticos/patología , Subgrupos de Linfocitos T/virología , Transcripción Genética , Adulto , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/química , ADN Viral/análisis , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/análisis , ARN Viral/análisis , Receptores de IgG/análisis , Subgrupos de Linfocitos T/química , Adulto Joven
11.
Antimicrob Agents Chemother ; 58(6): 3233-44, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24663024

RESUMEN

BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3'-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 µM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.


Asunto(s)
Inhibidores de Integrasa VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , Sustitución de Aminoácidos/genética , Sustitución de Aminoácidos/fisiología , Animales , Fármacos Anti-VIH/farmacología , Células CACO-2 , Clonación Molecular , Inhibidores Enzimáticos del Citocromo P-450/farmacología , ADN Viral/efectos de los fármacos , Farmacorresistencia Viral , Integrasa de VIH/biosíntesis , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/metabolismo , Inhibidores de Integrasa VIH/farmacocinética , Hepatocitos/metabolismo , Humanos , Ratones , Ratas , Suero/virología , Replicación Viral/efectos de los fármacos
12.
Infect Dis Ther ; 13(1): 173-187, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38221576

RESUMEN

INTRODUCTION: COVID-19 remains a significant risk for the immunocompromised given their lower responsiveness to vaccination or infection. Therefore, passive immunity through long-acting monoclonal antibodies (mAbs) offers a needed approach for pre-exposure prophylaxis (PrEP). Our study evaluated safety, anti-SARS-CoV-2 neutralizing activity, nasal penetration, and pharmacokinetics (PK) of two half-life-extended investigational mAbs, AER001 and AER002, providing the first demonstration of upper airway penetration of mAbs with the LS-modification. METHODS: This randomized, double-blind, placebo-controlled phase I study enrolled healthy adults (n = 80) who received two long-acting COVID mAbs (AER001 and AER002), AER002 alone, or placebo. The dose ranged from 100 mg (mg) to 1200 mg per mAb component. The primary objective was to describe the safety and tolerability following intravenous (IV) administration. Secondary objectives were to describe PK, anti-drug antibodies (ADA), neutralization activity levels, and safety evaluation through 6 months of follow-up. RESULTS: The majority (97.6%) of the reported adverse events (AE) post administration were of grade 1 severity. There were no serious adverse events (SAE) or ADAs. AER001 and AER002 successfully achieved an extended half-life of 105 days and 97.5 days, respectively. Participants receiving AER001 and AER002 (300 mg each) or AER002 (300 mg) alone showed 15- and 26-fold higher neutralization levels against D614G and omicron BA.1 than the placebo group 24 h post-administration. Single 300 or 1200 mg IV dose of AER001 and AER002 resulted in nasal mucosa transudation of approximately 2.5% and 2.7%, respectively. CONCLUSION: AER001 and AER002 showed an acceptable safety profile and extended half-life. High serum neutralization activity was observed against D614G and Omicron BA.1 compared to the placebo group. These data support that LS-modified mAbs can achieve durability, safety, potency, and upper airway tissue penetration and will guide the development of the next generation of mAbs for COVID-19 prevention and treatment. TRIAL REGISTRATION: EudraCT Number 2022-001709-35 (COV-2022-001).

13.
Nat Commun ; 15(1): 2133, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459022

RESUMEN

Many countries continue to experience pertussis epidemics despite widespread vaccination. Waning protection after booster vaccination has highlighted the need for a better understanding of the immunological factors that promote durable protection. Here we apply systems vaccinology to investigate antibody responses in adolescents in the Netherlands (N = 14; NL) and the United Kingdom (N = 12; UK) receiving a tetanus-diphtheria-acellular pertussis-inactivated poliovirus (Tdap-IPV) vaccine. We report that early antiviral and interferon gene expression signatures in blood correlate to persistence of pertussis-specific antibody responses. Single-cell analyses of the innate response identified monocytes and myeloid dendritic cells (MoDC) as principal responders that upregulate antiviral gene expression and type-I interferon cytokine production. With public data, we show that Tdap vaccination stimulates significantly lower antiviral/type-I interferon responses than Tdap-IPV, suggesting that IPV may promote antiviral gene expression. Subsequent in vitro stimulation experiments demonstrate TLR-dependent, IPV-specific activation of the pro-inflammatory p38 MAP kinase pathway in MoDCs. Together, our data provide insights into the molecular host response to pertussis booster vaccination and demonstrate that IPV enhances innate immune activity associated with persistent, pertussis-specific antibody responses.


Asunto(s)
Vacunas contra Difteria, Tétanos y Tos Ferina Acelular , Difteria , Poliovirus , Tétanos , Tos Ferina , Adolescente , Humanos , Bordetella pertussis , Inmunidad Humoral , Tos Ferina/prevención & control , Difteria/prevención & control , Vacunas Combinadas , Anticuerpos Antibacterianos , Vacuna Antipolio de Virus Inactivados , Vacunación , Inmunización Secundaria , Corynebacterium , Interferones , Antivirales
14.
Front Immunol ; 14: 1213375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622123

RESUMEN

Therapeutic monoclonal antibodies (mAb) targeting the immune checkpoint inhibitor programmed cell death protein 1 (PD-1) have achieved considerable clinical success in anti-cancer therapy through relieving T cell exhaustion. Blockade of PD-1 interaction with its ligands PD-L1 and PD-L2 is an important determinant in promoting the functional recovery of exhausted T cells. Here, we show that anti-PD-1 mAbs act through an alternative mechanism leading to the downregulation of PD-1 surface expression on memory CD4+ and CD8+ T cells. PD-1 receptor downregulation is a distinct process from receptor endocytosis and occurs in a CD14+ monocyte dependent manner with the CD64/Fcγ receptor I acting as the primary factor for this T cell extrinsic process. Importantly, downregulation of surface PD-1 strongly enhances antigen-specific functional recovery of exhausted PD-1+CD8+ T cells. Our study demonstrates a novel mechanism for reducing cell surface levels of PD-1 and limiting the inhibitory targeting by PD-L1/2 and thereby enhancing the efficacy of anti-PD-1 Ab in restoring T cell functionality.


Asunto(s)
Linfocitos T CD8-positivos , Receptores de IgG , Antígeno B7-H1 , Membrana Celular , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico
15.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37380369

RESUMEN

Cytokine storm induced by anti-human epidermal growth factor receptor-2 (HER2) therapies has not been reported. We report a patient with breast cancer treated with trastuzumab/pertuzumab who developed severe biventricular dysfunction and cardiogenic shock (CS) 6 months after starting double anti-HER2 therapy. The CS was accompanied by severe systemic inflammation, and cardiac MRI (cMRI) showed structural changes typical of myocardial inflammation. The immuno-inflammatory profile showed significantly increased levels of activation of the complement system, proinflammatory cytokines (IL-1ß, IL-6, IL-18, IL-17A, TNF-alpha) with increased activity of classical monocytic, T helper 17 cells (Th17), CD4 T and effector memory CD8 T subsets, whereas NK cell activation was not observed. The data suggest an important role for monocytes as initiators of this FcγR-dependent antibody-dependent cytotoxicity, leading to the overactivation of an adaptive T cell response, in which Th17 cells may act in synergy with T helper 1 cells (Th1) to drive the severe cytokine release syndrome. After discontinuation of trastuzumab/pertuzumab, hypercytokinemia and complement activity normalized along with clinical recovery. Cardiac function returned to baseline within 2 months of initial presentation, together with a resolution of the myocardial inflammation on MRI.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/etiología , Citocinas , Choque Cardiogénico/inducido químicamente
16.
Artículo en Inglés | MEDLINE | ID: mdl-36717268

RESUMEN

BACKGROUND AND OBJECTIVE: Depleting CD20+ B cells is the primary mechanism by which ocrelizumab (OCRE) is efficient in persons with multiple sclerosis (pwMS). However, the exact role of OCRE on other immune cell subsets directly or indirectly remains elusive. The purpose of this study is to characterize the dynamics of peripheral immune cells of pwMS on OCRE. METHODS: We collected blood samples from 38 pwMS before OCRE onset (T0) and at 6 and 12 months (T6, T12) after initiation. To cover the immune cell diversity, using mass cytometry time of flight, we designed a 38-parameter panel to analyze B, T, and innate immune cell markers and CNS migratory markers. In parallel, viral-specific CD8+ T-cell responses were assessed by the quantification of interferon-γ secretion using the enzyme-linked immunospot assay on cytomegalovirus, Epstein-Barr virus, and influenza stimulations. RESULTS: Beside B-cell depletion, we observed a loss in memory CD8+CD20+ and central memory CD8+ T cells but not in CD4+CD20+ T cells already at T6 and T12 (p < 0.001). The loss of memory CD8+ T cells correlated with a lower CXCR3 expression (p < 0.001) and CNS-related LFA-1 integrin expression (p < 0.001) as well as a reduced antiviral cellular immune response observed at both time points (p < 0.001). Of note, we did not observe major changes in the phenotype of the other cell types studied. Seven of 38 (18.4%) patients in our cohort presented with infections while on OCRE; 4 of which were switched from dimethyl fumarate. Finally, using a mixed linear model on mass cytometry data, we demonstrated that the immunomodulation induced by previous disease-modifying therapies (DMTs) was prolonged over the period of the study. DISCUSSION: In addition to its well-known role on B cells, our data suggest that OCRE also acts on CD8+ T cells by depleting the memory compartment. These changes in CD8+ T cells may be an asset in the action of OCRE on MS course but might also contribute to explain the increased occurrence of infections in these patients. Finally, although more data are needed to confirm this observation, it suggests that clinicians should pay a special attention to an increased infection risk in pwMS switched from other DMTs to OCRE.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Humanos , Linfocitos T CD8-positivos , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/metabolismo , Estudios Longitudinales , Fenotipo
17.
J Infect ; 87(2): 111-119, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321353

RESUMEN

OBJECTIVES: Intradermal skin test (IDT) with mRNA vaccines may represent a simple, reliable, and affordable tool to measure T cell response in immunocompromised patients who failed to mount serological responses following vaccination with mRNA covid-19 vaccines. METHODS: We compared anti-SARS-CoV-2 antibodies and cellular responses in vaccinated immunocompromised patients (n = 58), healthy seronegative naive controls (NC, n = 8), and healthy seropositive vaccinated controls (VC, n = 32) by Luminex, spike-induced IFN-γ Elispot and an IDT. A skin biopsy 24 h after IDT and single-cell RNAseq was performed in three vaccinated volunteers. RESULTS: Twenty-five percent of seronegative NC had a positive Elispot (2/8) and IDT (1/4), compared to 95% (20/21) and 93% (28/30) in seropositive VC, respectively. Single-cell RNAseq data in the skin of VC showed a predominant mixed population of effector helper and cytotoxic T cells. The TCR repertoire revealed 18/1064 clonotypes with known specificities against SARS-CoV-2, among which six were spike-specific. Seronegative immunocompromised patients with positive Elispot and IDT were in 83% (5/6) treated with B cell-depleting reagents, while those with negative IDT were all transplant recipients. CONCLUSIONS: Our results indicate that delayed local reaction to IDT reflects vaccine-induced T-cell immunity opening new perspectives to monitor seronegative patients and elderly populations with waning immunity.


Asunto(s)
COVID-19 , Linfocitos T , Anciano , Humanos , Vacunas contra la COVID-19 , COVID-19/diagnóstico , COVID-19/prevención & control , SARS-CoV-2 , Biomarcadores , Vacunas de ARNm , Anticuerpos Antivirales , Huésped Inmunocomprometido , Pruebas Cutáneas , Vacunación
18.
Nat Commun ; 14(1): 7764, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012137

RESUMEN

Understanding the development of humoral immune responses of children and adolescents to SARS-CoV-2 is essential for designing effective public health measures. Here we examine the changes of humoral immune response in school-aged children and adolescents during the COVID-19 pandemic (June 2020 to July 2022), with a specific interest in the Omicron variant (beginning of 2022). In our study "Ciao Corona", we assess in each of the five testing rounds between 1874 and 2500 children and adolescents from 55 schools in the canton of Zurich with a particular focus on a longitudinal cohort (n=751). By July 2022, 96.9% (95% credible interval 95.3-98.1%) of children and adolescents have SARS-CoV-2 anti-spike IgG (S-IgG) antibodies. Those with hybrid immunity or vaccination have higher S-IgG titres and stronger neutralising responses against Wildtype, Delta and Omicron BA.1 variants compared to those infected but unvaccinated. S-IgG persist over 18 months in 93% of children and adolescents. During the study period one adolescent was hospitalised for less than 24 hours possibly related to an acute SARS-CoV-2 infection. These findings show that the Omicron wave and the rollout of vaccines boosted S-IgG titres and neutralising capacity. Trial registration number: NCT04448717. https://clinicaltrials.gov/ct2/show/NCT04448717 .


Asunto(s)
COVID-19 , Niño , Humanos , Adolescente , COVID-19/epidemiología , Inmunidad Humoral , SARS-CoV-2 , Estudios de Cohortes , Pandemias , Estudios Prospectivos , Anticuerpos Antivirales , Inmunoglobulina G , Anticuerpos Neutralizantes
19.
Cell Host Microbe ; 31(10): 1714-1731.e9, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37751747

RESUMEN

Although gut and lymph node (LN) memory CD4 T cells represent major HIV and simian immunodeficiency virus (SIV) tissue reservoirs, the study of the role of dendritic cells (DCs) in HIV persistence has long been limited to the blood due to difficulties to access lymphoid tissue samples. In this study, we show that LN migratory and resident DC subpopulations harbor distinct phenotypic and transcriptomic profiles. Interestingly, both LN DC subpopulations contain HIV intact provirus and inducible replication-competent HIV despite the expression of the antiviral restriction factor SAMHD1. Notably, LN DC subpopulations isolated from HIV-infected individuals treated for up to 14 years are transcriptionally silent but harbor replication-competent virus that can be induced upon TLR7/8 stimulation. Taken together, these results uncover a potential important contribution of LN DCs to HIV infection in the presence of ART.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Linfocitos T CD4-Positivos , Antirretrovirales/uso terapéutico , Ganglios Linfáticos , Células Dendríticas
20.
J Infect ; 87(6): 524-537, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852477

RESUMEN

OBJECTIVES: Due to the rapid evolution of SARS-CoV-2 to variants with reduced sensitivity to vaccine-induced humoral immunity and the near complete loss of protective efficacy of licensed therapeutic monoclonal antibodies, we isolated a potent, broad-spectrum neutralizing antibody that could potentially provide prophylactic protection to immunocompromised patient populations. METHODS: Spike-specific B-cell clones isolated from a vaccinated post-infected donor were profiled for those producing potent neutralizing antibodies against a panel of SARS-CoV-2 variants. The P4J15 antibody was further characterized to define the structural binding epitope, viral resistance, and in vivo efficacy. RESULTS: The P4J15 mAb shows <20 ng/ml neutralizing activity against all variants including the latest XBB.2.3 and EG.5.1 sub-lineages. Structural studies of P4J15 in complex with Omicron XBB.1 Spike show that the P4J15 epitope shares ∼93% of its buried surface area with the ACE2 contact region, consistent with an ACE2 mimetic antibody. In vitro selection of SARS-CoV-2 mutants escaping P4J15 neutralization showed reduced infectivity, poor ACE2 binding, and mutations are rare in public sequence databases. Using a SARS-CoV-2 XBB.1.5 monkey challenge model, P4J15-LS confers complete prophylactic protection with an exceptionally long in vivo half-life of 43 days. CONCLUSIONS: The P4J15 mAb has potential as a broad-spectrum anti-SARS-CoV-2 drug for prophylactic protection of at-risk patient populations.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Haplorrinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA