Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 560(7719): 441-446, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30111840

RESUMEN

Common genetic contributions to autism spectrum disorder (ASD) reside in risk gene variants that individually have minimal effect sizes. As environmental factors that perturb neurodevelopment also underlie idiopathic ASD, it is crucial to identify altered regulators that can orchestrate multiple ASD risk genes during neurodevelopment. Cytoplasmic polyadenylation element binding proteins 1-4 (CPEB1-4) regulate the translation of specific mRNAs by modulating their poly(A)-tails and thereby participate in embryonic development and synaptic plasticity. Here we find that CPEB4 binds transcripts of most high-confidence ASD risk genes. The brains of individuals with idiopathic ASD show imbalances in CPEB4 transcript isoforms that result from decreased inclusion of a neuron-specific microexon. In addition, 9% of the transcriptome shows reduced poly(A)-tail length. Notably, this percentage is much higher for high-confidence ASD risk genes, correlating with reduced expression of the protein products of ASD risk genes. An equivalent imbalance in CPEB4 transcript isoforms in mice mimics the changes in mRNA polyadenylation and protein expression of ASD risk genes and induces ASD-like neuroanatomical, electrophysiological and behavioural phenotypes. Together, these data identify CPEB4 as a regulator of ASD risk genes.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Predisposición Genética a la Enfermedad/genética , Poliadenilación , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Exones/genética , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Fenotipo , Unión Proteica , ARN Mensajero/química , ARN Mensajero/genética , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 116(16): 8000-8009, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30926666

RESUMEN

Neural stem cells continuously generate newborn neurons that integrate into and modify neural circuitry in the adult hippocampus. The molecular mechanisms that regulate or perturb neural stem cell proliferation and differentiation, however, remain poorly understood. Here, we have found that mouse hippocampal radial glia-like (RGL) neural stem cells express the synaptic cochaperone cysteine string protein-α (CSP-α). Remarkably, in CSP-α knockout mice, RGL stem cells lose quiescence postnatally and enter into a high-proliferation regime that increases the production of neural intermediate progenitor cells, thereby exhausting the hippocampal neural stem cell pool. In cell culture, stem cells in hippocampal neurospheres display alterations in proliferation for which hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway is the primary cause of neurogenesis deregulation in the absence of CSP-α. In addition, RGL cells lose quiescence upon specific conditional targeting of CSP-α in adult neural stem cells. Our findings demonstrate an unanticipated cell-autonomic and circuit-independent disruption of postnatal neurogenesis in the absence of CSP-α and highlight a direct or indirect CSP-α/mTOR signaling interaction that may underlie molecular mechanisms of brain dysfunction and neurodegeneration.


Asunto(s)
Proteínas del Choque Térmico HSP40 , Proteínas de la Membrana , Células-Madre Neurales/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Células Cultivadas , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Hipocampo/citología , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Neurogénesis/genética , Lipofuscinosis Ceroideas Neuronales , Transducción de Señal/genética
3.
PLoS Biol ; 14(7): e1002522, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27454736

RESUMEN

One of the most fascinating properties of the brain is the ability to function smoothly across decades of a lifespan. Neurons are nondividing mature cells specialized in fast electrical and chemical communication at synapses. Often, neurons and synapses operate at high levels of activity through sophisticated arborizations of long axons and dendrites that nevertheless stay healthy throughout years. On the other hand, aging and activity-dependent stress strike onto the protein machineries turning proteins unfolded and prone to form pathological aggregates associated with neurodegeneration. How do neurons protect from those insults and remain healthy for their whole life? Ali and colleagues now present a molecular mechanism by which the enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) acts not only as a NAD synthase involved in axonal maintenance but as a molecular chaperone helping neurons to overcome protein unfolding and protein aggregation.


Asunto(s)
Axones , Nicotinamida-Nucleótido Adenililtransferasa , Dendritas , Chaperonas Moleculares , NAD , Neuronas
4.
J Physiol ; 593(13): 2867-88, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25981717

RESUMEN

KEY POINTS: Neurotransmitter release requires a tight coupling between synaptic vesicle exocytosis and endocytosis with dynamin being a key protein in that process. We used imaging techniques to examine the time course of endocytosis at mouse motor nerve terminals expressing synaptopHluorin, a genetically encoded reporter of the synaptic vesicle cycle. We separated two sequential phases of endocytosis taking place during the stimulation train: early and late endocytosis. Freshly released synaptic vesicle proteins are preferentially retrieved during the early phase, which is very sensitive to dynasore, an inhibitor of dynamin GTPase activity. Synaptic vesicle proteins pre-existing at the plasma membrane before the stimulation are preferentially retrieved during the late phase, which is very sensitive to myristyl trimethyl ammonium bromide (MitMAB), an inhibitor of the dynamin-phospholipid interaction. ABSTRACT: Synaptic endocytosis is essential at nerve terminals to maintain neurotransmitter release by exocytosis. Here, at the neuromuscular junction of synaptopHluorin (spH) transgenic mice, we have used imaging to study exo- and endocytosis occurring simultaneously during nerve stimulation. We observed two endocytosis components, which occur sequentially during stimulation. The early component of endocytosis apparently internalizes spH molecules freshly exocytosed. This component was sensitive to dynasore, a blocker of dynamin 1 GTPase activity. In contrast, this early component was resistant to myristyl trimethyl ammonium bromide (MiTMAB), a competitive agent that blocks dynamin binding to phospholipid membranes. The late component of endocytosis is likely to internalize spH molecules that pre-exist at the plasma membrane before stimulation starts. This component was blocked by MiTMAB, perhaps by impairing the binding of dynamin or other key endocytic proteins to phospholipid membranes. Our study suggests the co-existence of two sequential synaptic endocytosis steps taking place during stimulation that are susceptible to pharmacological dissection: an initial step, preferentially sensitive to dynasore, that internalizes vesicular components immediately after they are released, and a MiTMAB-sensitive step that internalizes vesicular components pre-existing at the plasma membrane surface. In addition, we report that post-stimulus endocytosis also has several components with different sensitivities to dynasore and MiTMAB.


Asunto(s)
Dinaminas/antagonistas & inhibidores , Endocitosis , Hidrazonas/farmacología , Neuronas Motoras/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Animales , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología
5.
J Neurosci ; 31(3): 1106-13, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21248135

RESUMEN

In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.


Asunto(s)
Enfermedad de Huntington/fisiopatología , Unión Neuromuscular/fisiopatología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Potenciales de Acción/fisiología , Animales , Western Blotting , Modelos Animales de Enfermedad , Electrofisiología , Potenciales Evocados/fisiología , Proteínas del Choque Térmico HSP40/metabolismo , Enfermedad de Huntington/metabolismo , Inmunohistoquímica , Proteínas de la Membrana/metabolismo , Ratones , Unión Neuromuscular/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Péptidos , Proteínas R-SNARE/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteína 1 de Membrana Asociada a Vesículas/metabolismo
6.
J Neurosci ; 30(21): 7377-91, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20505105

RESUMEN

The continuous release of neurotransmitter could be seen to place a persistent burden on presynaptic proteins, one that could compromise nerve terminal function. This supposition and the molecular mechanisms that might protect highly active synapses merit investigation. In hippocampal cultures from knock-out mice lacking the presynaptic cochaperone cysteine string protein-alpha (CSP-alpha), we observe progressive degeneration of highly active synaptotagmin 2 (Syt2)-expressing GABAergic synapses, but surprisingly not of glutamatergic terminals. In CSP-alpha knock-out mice, synaptic degeneration of basket cell terminals occurs in vivo in the presence of normal glutamatergic synapses onto dentate gyrus granule cells. Consistent with this, in hippocampal cultures from these mice, the frequency of miniature IPSCs, caused by spontaneous GABA release, progressively declines, whereas the frequency of miniature excitatory AMPA receptor-mediated currents (mEPSCs), caused by spontaneous release of glutamate, is normal. However, the mEPSC amplitude progressively decreases. Remarkably, long-term block of glutamatergic transmission in cultures lacking CSP-alpha substantially rescues Syt2-expressing GABAergic synapses from neurodegeneration. These findings demonstrate that elevated neural activity increases synapse vulnerability and that CSP-alpha is essential to maintain presynaptic function under a physiologically high-activity regimen.


Asunto(s)
Potenciales Postsinápticos Inhibidores/fisiología , Degeneración Nerviosa/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Astrocitos/fisiología , Bicuculina/farmacología , Células Cultivadas , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , GABAérgicos/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Proteínas del Choque Térmico HSP40/deficiencia , Hipocampo/citología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Microscopía Confocal/métodos , Microscopía Electrónica de Transmisión/métodos , Mutación/genética , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Ratas , Sinapsis/genética , Sinapsis/ultraestructura
7.
Biochem Soc Trans ; 38(2): 488-92, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298208

RESUMEN

HD (Huntington's disease) is produced by the expression of mutant forms of the protein htt (huntingtin) containing a pathologically expanded poly-glutamine repeat. For unknown reasons, in HD patients and HD mouse models, neurons from the striatum and cerebral cortex degenerate and lead to motor dysfunction and dementia. Synaptic transmission in those neurons becomes progressively altered during the course of the disease. However, the relationship between synaptic dysfunction and neurodegeneration in HD is not yet clear. Are there early specific functional synaptic changes preceding symptoms and neurodegeneration? What is the role of those changes in neuronal damage? Recent experiments in a Drosophila model of HD have showed that abnormally increased neurotransmitter release might be a leading cause of neurodegeneration. In the present review, we summarize recently described synaptic alterations in HD animal models and discuss potential underlying molecular mechanisms.


Asunto(s)
Enfermedad de Huntington/fisiopatología , Terminales Presinápticos/fisiología , Animales , Modelos Animales de Enfermedad , Drosophila/fisiología , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Red Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Ubiquitina/metabolismo
8.
Neuron ; 42(2): 237-51, 2004 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15091340

RESUMEN

Cysteine string protein alpha (CSPalpha)--an abundant synaptic vesicle protein that contains a DNA-J domain characteristic of Hsp40 chaperones--is thought to regulate Ca2+ channels and/or synaptic vesicle exocytosis. We now show that, in young mice, deletion of CSPalpha does not impair survival and causes no significant changes in presynaptic Ca2+ currents or synaptic vesicle exocytosis as measured in the Calyx of Held synapse. At 2-4 weeks of age, however, CSPalpha-deficient mice develop a progressive, fatal sensorimotor disorder. The neuromuscular junctions and Calyx synapses of CSPalpha-deficient mice exhibit increasing neurodegenerative changes, synaptic transmission becomes severely impaired, and the mutant mice die at approximately 2 months of age. Our data suggest that CSPalpha is not essential for the normal operation of Ca2+ channels or exocytosis but acts as a presynaptic chaperone that maintains continued synaptic function, raising the possibility that enhanced CSPalpha function could attenuate neurodegenerative diseases.


Asunto(s)
Proteínas de la Membrana/biosíntesis , Degeneración Nerviosa/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/ultraestructura , Proteínas del Choque Térmico HSP40 , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Terminales Presinápticos/ultraestructura , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestructura
9.
J Neurosci ; 27(20): 5422-30, 2007 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-17507564

RESUMEN

We monitored presynaptic exocytosis and vesicle recycling at neuromuscular junctions of transgenic mice expressing synaptopHluorin (spH), using simultaneous optical and electrophysiological recordings. Synaptic transmission was indistinguishable from that in wild-type controls. Fluorescence rose during and decayed monotonically after stimulus trains to the nerve, with amplitudes and decay times increasing with the amount of stimulation. The relatively large size of synaptic terminals allowed us to examine the spatial profile of fluorescence changes. We identified hot spots of exocytosis, which were stable with repeated trains. Photobleach experiments showed that spH freshly exposed by nerve stimulation was not preferentially retrieved by compensatory endocytosis; instead, most retrieved spH preexisted in the surface membrane. Finally, we compared fluorescence and electrical [summed end-plate potentials (EPPs)] estimates of exocytosis, which diverged during repeated trains, as fluorescence exceeded summed EPPs, although the average amplitude of miniature EPPs was unchanged. This might reflect exocytosis of spH-containing, acetylcholine-free ("empty") vesicles or other organelles during intense stimulation.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/biosíntesis , Unión Neuromuscular/fisiología , Terminales Presinápticos/fisiología , Proteínas Recombinantes de Fusión/biosíntesis , Transmisión Sináptica/fisiología , Animales , Proteínas Fluorescentes Verdes/análisis , Ratones , Ratones Transgénicos , Unión Neuromuscular/química , Terminales Presinápticos/química , Proteínas Recombinantes de Fusión/análisis , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
10.
Aging Cell ; 17(5): e12821, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30058223

RESUMEN

The striatum integrates motor behavior using a well-defined microcircuit whose individual components are independently affected in several neurological diseases. The glial cell line-derived neurotrophic factor (GDNF), synthesized by striatal interneurons, and Sonic hedgehog (Shh), produced by the dopaminergic neurons of the substantia nigra (DA SNpc), are both involved in the nigrostriatal maintenance but the reciprocal neurotrophic relationships among these neurons are only partially understood. To define the postnatal neurotrophic connections among fast-spiking GABAergic interneurons (FS), cholinergic interneurons (ACh), and DA SNpc, we used a genetically induced mouse model of postnatal DA SNpc neurodegeneration and separately eliminated Smoothened (Smo), the obligatory transducer of Shh signaling, in striatal interneurons. We show that FS postnatal survival relies on DA SNpc and is independent of Shh signaling. On the contrary, Shh signaling but not dopaminergic striatal innervation is required to maintain ACh in the postnatal striatum. ACh are required for DA SNpc survival in a GDNF-independent manner. These data demonstrate the existence of three parallel but interdependent neurotrophic relationships between SN and striatal interneurons, partially defined by Shh and GDNF. The definition of these new neurotrophic interactions opens the search for new molecules involved in the striatal modulatory circuit maintenance with potential therapeutic value.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/fisiología , Interneuronas/fisiología , Red Nerviosa/fisiología , Sustancia Negra/fisiología , Acetilcolina/metabolismo , Potenciales de Acción , Animales , Animales Recién Nacidos , Supervivencia Celular , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Proteínas Hedgehog/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/patología , Transducción de Señal
11.
Mol Cell Biol ; 22(18): 6487-97, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12192047

RESUMEN

Rab3D, a member of the Rab3 subfamily of the Rab/ypt GTPases, is expressed on zymogen granules in the pancreas as well as on secretory vesicles in mast cells and in the parotid gland. To shed light on the function of Rab3D, we have generated Rab3D-deficient mice. These mice are viable and have no obvious phenotypic changes. Secretion of mast cells is normal as revealed by capacitance patch clamping. Furthermore, enzyme content and overall morphology are unchanged in pancreatic and parotid acinar cells of knockout mice. Both the exocrine pancreas and the parotid gland show normal release kinetics in response to secretagogue stimulation, suggesting that Rab3D is not involved in exocytosis. However, the size of secretory granules in both the exocrine pancreas and the parotid gland is significantly increased, with the volume being doubled. We conclude that Rab3D exerts its function during granule maturation, possibly by preventing homotypic fusion of secretory granules.


Asunto(s)
Exocitosis , Vesículas Secretoras/ultraestructura , Proteínas de Unión al GTP rab3/fisiología , Amilasas/metabolismo , Animales , Carbacol/farmacología , Membrana Celular/metabolismo , ADN Complementario/metabolismo , Exones , Cinética , Mastocitos/fisiología , Ratones , Ratones Noqueados , Microscopía Electrónica , Páncreas/fisiología , Glándula Parótida/metabolismo , Glándula Parótida/fisiología , Técnicas de Placa-Clamp , Fenotipo , Isoformas de Proteínas/fisiología , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Proteínas de Unión al GTP rab3/genética
12.
ACS Nano ; 11(4): 3429-3432, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28388033

RESUMEN

The release of chemical mediators is an essential element of cell-to-cell communication. Signaling molecules such as neurotransmitters and hormones are stored in membrane-bound organelles called secretory vesicles. Some of these organelles can store molecules at high concentrations, overcoming the osmotic shock that could burst the organelle. These organelles contain a proteinaceous matrix that traps the molecules and avoids high intravesicular osmotic pressure. The functional nanostructure and internal organization of the matrix is not well understood. A report by Lovric et al. in this issue of ACS Nano provides insight into the storage of a small molecule-dopamine-within the intraluminal compartments of a secretory vesicle. Lovric et al. used a powerful combination of high spatial resolution mass spectrometry and transmission electron microscopy in conjunction with amperometric measurements of exocytotic release to delineate the temporal and spatial fate of intravesicular dopamine and its interaction with the matrix.


Asunto(s)
Dopamina , Vesículas Secretoras , Exocitosis , Nanoestructuras , Espectrometría de Masa de Ion Secundario
13.
EMBO Mol Med ; 8(11): 1289-1309, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27807076

RESUMEN

Skeletal muscle regeneration by muscle satellite cells is a physiological mechanism activated upon muscle damage and regulated by Notch signaling. In a family with autosomal recessive limb-girdle muscular dystrophy, we identified a missense mutation in POGLUT1 (protein O-glucosyltransferase 1), an enzyme involved in Notch posttranslational modification and function. In vitro and in vivo experiments demonstrated that the mutation reduces O-glucosyltransferase activity on Notch and impairs muscle development. Muscles from patients revealed decreased Notch signaling, dramatic reduction in satellite cell pool and a muscle-specific α-dystroglycan hypoglycosylation not present in patients' fibroblasts. Primary myoblasts from patients showed slow proliferation, facilitated differentiation, and a decreased pool of quiescent PAX7+ cells. A robust rescue of the myogenesis was demonstrated by increasing Notch signaling. None of these alterations were found in muscles from secondary dystroglycanopathy patients. These data suggest that a key pathomechanism for this novel form of muscular dystrophy is Notch-dependent loss of satellite cells.


Asunto(s)
Glucosiltransferasas/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación , Receptores Notch/metabolismo , Células Satélite del Músculo Esquelético/patología , Transducción de Señal , Biopsia , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Músculos/patología , Análisis de Secuencia de ADN , España
14.
J Neurosci ; 22(19): 8438-46, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12351718

RESUMEN

Synaptotagmin 1, a Ca2+ sensor for fast synaptic vesicle exocytosis, contains two C2 domains that form Ca2+-dependent complexes with phospholipids. To examine the functional importance of Ca2+ binding to the C2A domain of synaptotagmin 1, we studied two C2A domain mutations, D232N and D238N, using recombinant proteins and knock-in mice. Both mutations severely decreased intrinsic Ca2+ binding and Ca2+-dependent phospholipid binding by the isolated C2A domain. Both mutations, however, did not alter the apparent Ca2+ affinity of the double C2 domain fragment, although both decreased the tightness of the Ca2+/phospholipid/double C2 domain complex. When introduced into the endogenous synaptotagmin 1 gene in mice, the D232N and D238N mutations had no apparent effect on morbidity and mortality and caused no detectable alteration in the Ca2+-dependent properties of synaptotagmin 1. Electrophysiological recordings of cultured hippocampal neurons from knock-in mice revealed that neither mutation induced major changes in synaptic transmission. The D232N mutation, however, caused increased synaptic depression during repetitive stimulation, whereas the D238N mutation did not exhibit this phenotype. Our data indicate that Ca2+ binding to the C2A domain of synaptotagmin 1 may be important but not essential, consistent with the finding that the two C2 domains cooperate and may be partially redundant in Ca2+-dependent phospholipid binding. Moreover, although the apparent Ca2+ affinity of the synaptotagmin 1/phospholipid complex is critical, the tightness of the Ca2+/phospholipid complex is not. Our data also demonstrate that subtle changes in the biochemical properties of synaptotagmin 1 can result in significant alterations in synaptic responses.


Asunto(s)
Proteínas de Unión al Calcio , Calcio/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión/fisiología , Células Cultivadas , Liposomas/química , Liposomas/metabolismo , Sustancias Macromoleculares , Glicoproteínas de Membrana/química , Ratones , Ratones Mutantes , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/química , Neuronas/citología , Neuronas/metabolismo , Mutación Puntual , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloruro de Sodio/farmacología , Relación Estructura-Actividad , Transmisión Sináptica/fisiología , Sinaptotagmina I , Sinaptotagminas
15.
J Gen Physiol ; 122(3): 265-76, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12939392

RESUMEN

We tested the long-standing hypothesis that synaptotagmin 1 is the Ca2+ sensor for fast neurosecretion by analyzing the intracellular Ca2+ dependence of large dense-core vesicle exocytosis in a mouse strain carrying a mutated synaptotagmin C2A domain. The mutation (R233Q) causes a twofold increase in the KD of Ca2+-dependent phospholipid binding to the double C2A-C2B domain of synaptotagmin. Using photolysis of caged calcium and capacitance measurements we found that secretion from mutant cells had lower secretory rates, longer secretory delays, and a higher intracellular Ca2+-threshold for secretion due to a twofold increase in the apparent KD of the Ca2+ sensor for fast exocytosis. Single amperometric fusion events were unchanged. We conclude that Ca2+-dependent phospholipid binding to synaptotagmin 1 mirrors the intracellular Ca2+ dependence of exocytosis.


Asunto(s)
Proteínas de Unión al Calcio , Calcio/fisiología , Exocitosis/fisiología , Glicoproteínas de Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Vesículas Secretoras/fisiología , Animales , Arginina/genética , Células Cromafines/metabolismo , Umbral Diferencial , Capacidad Eléctrica , Glutamina/genética , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Fosfolípidos/metabolismo , Mutación Puntual/genética , Sinaptotagmina I , Sinaptotagminas , Factores de Tiempo
17.
ACS Nano ; 7(8): 6605-18, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23826767

RESUMEN

Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.


Asunto(s)
Materiales Biocompatibles/química , Cápsulas/química , Electrólitos/química , Adsorción , Animales , Caveolas/química , Línea Celular Tumoral , Clatrina/química , Citoplasma/metabolismo , Sistemas de Liberación de Medicamentos , Endocitosis , Humanos , Microdominios de Membrana/química , Ratones , Microscopía Confocal , Microscopía Electrónica , Mitocondrias/metabolismo , Nanotecnología/métodos , Fagocitosis , Fagosomas/química , Electricidad Estática
18.
Neuron ; 74(1): 151-65, 2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-22500637

RESUMEN

Cysteine string protein-α (CSP-α) is a synaptic vesicle protein that prevents activity-dependent neurodegeneration by poorly understood mechanisms. We have studied the synaptic vesicle cycle at the motor nerve terminals of CSP-α knock-out mice expressing the synaptopHluorin transgene. Mutant nerve terminals fail to sustain prolonged release and the number of vesicles available to be released decreases. Strikingly, the SNARE protein SNAP-25 is dramatically reduced. In addition, endocytosis during the stimulus fails to maintain the size of the recycling synaptic vesicle pool during prolonged stimulation. Upon depolarization, the styryl dye FM 2-10 becomes trapped and poorly releasable. Consistently with the functional results, electron microscopy analysis revealed characteristic features of impaired synaptic vesicle recycling. The unexpected defect in vesicle recycling in CSP-α knock-out mice provides insights into understanding molecular mechanisms of degeneration in motor nerve terminals.


Asunto(s)
Exocitosis/fisiología , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas Motoras/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/ultraestructura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Sinápticas/ultraestructura , Proteína 25 Asociada a Sinaptosomas/metabolismo
19.
Proc Natl Acad Sci U S A ; 104(7): 2525-30, 2007 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-17287346

RESUMEN

CASK is an evolutionarily conserved multidomain protein composed of an N-terminal Ca2+/calmodulin-kinase domain, central PDZ and SH3 domains, and a C-terminal guanylate kinase domain. Many potential activities for CASK have been suggested, including functions in scaffolding the synapse, in organizing ion channels, and in regulating neuronal gene transcription. To better define the physiological importance of CASK, we have now analyzed CASK "knockdown" mice in which CASK expression was suppressed by approximately 70%, and CASK knockout (KO) mice, in which CASK expression was abolished. CASK knockdown mice are viable but smaller than WT mice, whereas CASK KO mice die at first day after birth. CASK KO mice exhibit no major developmental abnormalities apart from a partially penetrant cleft palate syndrome. In CASK-deficient neurons, the levels of the CASK-interacting proteins Mints, Veli/Mals, and neurexins are decreased, whereas the level of neuroligin 1 (which binds to neurexins that in turn bind to CASK) is increased. Neurons lacking CASK display overall normal electrical properties and form ultrastructurally normal synapses. However, glutamatergic spontaneous synaptic release events are increased, and GABAergic synaptic release events are decreased in CASK-deficient neurons. In contrast to spontaneous neurotransmitter release, evoked release exhibited no major changes. Our data suggest that CASK, the only member of the membrane-associated guanylate kinase protein family that contains a Ca2+/calmodulin-dependent kinase domain, is required for mouse survival and performs a selectively essential function without being in itself required for core activities of neurons, such as membrane excitability, Ca2+-triggered presynaptic release, or postsynaptic receptor functions.


Asunto(s)
Guanilato-Quinasas/fisiología , Sinapsis/fisiología , Animales , Eliminación de Gen , Ácido Glutámico/metabolismo , Guanilato-Quinasas/deficiencia , Guanilato-Quinasas/genética , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/fisiología , Sobrevida , Sinapsis/metabolismo
20.
Proc Natl Acad Sci U S A ; 103(8): 2926-31, 2006 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-16477021

RESUMEN

Cysteine string protein (CSP) alpha is an abundant synaptic vesicle protein that contains a DNA-J domain characteristic of Hsp40-type cochaperones. Previous studies showed that deletion of CSPalpha in mice leads to massive lethal neurodegeneration but did not clarify how the neurodegeneration affects specific subpopulations of neurons. Here, we analyzed the effects of the CSPalpha deficiency on tonically active ribbon synapses of the retina and the inner ear. We show that CSPalpha-deficient photoreceptor terminals undergo dramatic and rapidly progressive neurodegeneration that starts before eye opening and initially does not affect other retinal synapses. These changes are associated with progressive blindness. In contrast, ribbon synapses of auditory hair cells did not exhibit presynaptic impairments in CSPalpha-deficient mice. Hair cells, but not photoreceptor cells or central neurons, express CSPbeta, thereby accounting for the lack of a hair-cell phenotype in CSPalpha knockout mice. Our data demonstrate that tonically active ribbon synapses in retina are particularly sensitive to the deletion of CSPalpha and that expression of at least one CSP isoform is essential to protect such tonically active synapses from neurodegeneration.


Asunto(s)
Ceguera/patología , Proteínas Portadoras/fisiología , Proteínas del Tejido Nervioso/fisiología , Enfermedades Neurodegenerativas/patología , Células Fotorreceptoras de Vertebrados/ultraestructura , Sinapsis/ultraestructura , Animales , Ceguera/genética , Ceguera/metabolismo , Proteínas Portadoras/genética , Proteínas del Choque Térmico HSP40/deficiencia , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/fisiología , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Internas/fisiología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA