Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Imaging ; 58: 67-75, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30660705

RESUMEN

INTRODUCTION: Functional magnetic resonance imaging (fMRI) is one of the most highly regarded techniques in the neuroimaging field. This technique is based on vascular responses to neuronal activation and is extensively used in clinical and animal research studies. In preclinical settings, fMRI is usually applied to anesthetized animals. However, anesthetics cause alterations, e.g. hypothermia, in the physiology of the animals and this has the potential to disrupt fMRI signals. The current temperature control method involves a technician, as well as monitoring the acquisition MRI sequences, also controlling the temperature of the animal; this is inefficient. METHODS: In order to avoid hypothermia in anesthetized rodents an Open-Source automatic temperature control device is presented. It takes signals from an intrarectal temperature sensor, as well as signals from a thermal bath, which warms up the body of the animal under study, in order to determine the mathematical model of the thermal response of the animal. RESULTS: A Proportional-Integral-Derivative (PID) algorithm, which was discretized in an Arduino microcontroller, was developed to automatically keep stable the body temperature of the animal under study. The PID algorithm has been shown to be accurate in preserving the body temperature of the animal. CONCLUSION: This work presents the TherMouseDuino. It is an Open-Source automatic temperature control system and reduces temperature fluctuations, thus providing robust conditions in which to perform fMRI experiments. Furthermore, our device frees up the technician to focus solely on monitoring the MRI sequences.


Asunto(s)
Diseño de Equipo , Hipotermia Inducida , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Algoritmos , Animales , Temperatura Corporal , Computadores , Calor , Ratones , Modelos Teóricos , Neuroimagen/instrumentación , Neuroimagen/métodos , Neuronas
2.
Methods Mol Biol ; 1718: 117-134, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29341006

RESUMEN

Since its discovery in the early 90s, BOLD signal-based functional Magnetic Resonance Imaging (fMRI) has become a fundamental technique for the study of brain activity in basic and clinical research. Functional MRI signals provide an indirect but robust and quantitative readout of brain activity through the tight coupling between cerebral blood flow and neuronal activation, the so-called neurovascular coupling. Combined with experimental techniques only available in animal models, such as intracerebral micro-stimulation, optogenetics or pharmacogenetics, provides a powerful framework to investigate the impact of specific circuit manipulations on overall brain dynamics. The purpose of this chapter is to provide a comprehensive protocol to measure brain activity using fMRI with intracerebral electric micro-stimulation in murine models. Preclinical research (especially in rodents) opens the door to very sophisticated and informative experiments, but at the same time imposes important constrains (i.e., anesthetics, translatability), some of which will be addressed here.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Estimulación Eléctrica , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuronas/fisiología , Animales , Circulación Cerebrovascular , Neuroimagen Funcional , Acoplamiento Neurovascular , Oxígeno/metabolismo , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA