Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 20(44): 14465-72, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25220485

RESUMEN

Smart supramolecular hydrogels have been prepared from a bolaamphiphilic L-valine derivative in aqueous solutions of different salts. The hydrogels respond selectively to different ions and are either reinforced or weakened. In one case, in contrast to conventional systems, the hydrogels are formed upon heating of the system. The use of the hydrogels in the controlled release of an entrapped dye is described as a proof of the potential applications of these systems. The responsive hydrogels were rationally designed by taking into account the noticeable effect of different ions from the Hofmeister series in the solubility of the hydrogelator, which was assessed by using NMR experiments. On the one hand, kosmotropic anions such as sulfate produce a remarkable solubility decrease in the gelator, which is associated with gel reinforcement, as measured by rheological experiments. On the other hand, chaotropic species such as perchlorate weaken the gel. A dramatic effect was observed in the presence of guanidinium chloride, which boosted the solubility of the gelator, in accordance with its chaotropic behaviour reported in protein science. In this case, a direct interaction of the guanidinium species with the carbonyl groups of the hydrogelator is detected by (13) C NMR spectroscopy. The weakening of this interaction upon a temperature increase allows for the preparation of heat-set hydrogelating systems.

2.
Chemistry ; 20(19): 5762-7, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24668870

RESUMEN

Nanostructured xerogels have been prepared by the freeze-drying of hydrogels and aggregates formed by bolaamphiphilic L-valine derivatives after aging under different environmental conditions. A wide variety of shapes and sizes has been achieved by a simple methodology. These nanostructures have been studied by SEM and WAXD and a dramatic influence of structural flexibility on the kinetics of aggregation has been observed. Such flexibility and a modulation of the hydrophobic effect have shown a profound influence in the packing of these compounds and revealed a high degree of polymorphism.


Asunto(s)
Hidrogeles/química , Tensoactivos/química , Valina/química , Cristalización , Congelación , Cinética , Nanoestructuras/química
3.
Langmuir ; 29(30): 9544-50, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23805836

RESUMEN

The gelation efficiency of low molecular weight bolaamphiphilic hydrogelators 1 and 2 is influenced by the presence of SDS micelles. Similarly, the critical micellar concentration value of SDS is reduced in the presence of the studied molecular hydrogelators. Rheological measurements indicate that the strength of the hydrogels can be modulated with SDS, the gels becoming weaker in the presence of micelles. This behavior has been rationalized with the help of NMR studies using diffusion measurements and NOE correlations. The results obtained clearly point to the formation of mixed micelles composed of SDS and the hydrogelators. In the case of 1, the gelator:SDS ratio in the mixed micelles has been estimated from solubility studies to be ca. 1:2.5. Electron microscopy reveals that when SDS is present, the morphology of the xerogels is modified in its appearance at the micrometer scale but fibers with diameter in the nanometer range are observed in all the cases. The interplay between the surfactant and the gelators provides with new possibilities for the modulation of both gel and micelle formation. Examples are shown to highlight the potential usefulness of this type of interconnected system. In one case the release of a gel entrapped dye is modulated by the presence of SDS and sodium chloride. In another example, an intricate system that responds to a temperature excursion by irreversible micelle disassembly is shown.

4.
Nanoscale Adv ; 1(3): 937-947, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36133214

RESUMEN

Ball milling is a simple, fast, cost-effective green technology with enormous potential. One of the most interesting applications of this technology in the field of cellulose is the preparation and the chemical modification of cellulose nanocrystals and nanofibers. Although a number of studies have been reported in the literature, the potential of this technique in the field of cellulose nanoparticles has not been fully exploited. This minireview aims at putting existing work into perspective, highlighting the significance and the potential of this green, sustainable technique to facilitate the identification of areas of future development.

5.
Polymers (Basel) ; 11(5)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108926

RESUMEN

The development of photo-responsive capsules to tune and control the sustained-release of encapsulated actives is a fascinating and challenging route to improve the performances and effectiveness of a wide range of delivery applications. In this work, we report the preparation of visible light-responsive capsules obtained via oil-in-water interfacial polycondensation between modified diacyl-chloride azobenzene moiety and diamine flexible spacer in the presence of cross-linkers with different structures and functionalities. The effect on the release profile of the encapsulated perfume oil was investigated using three flexible spacers with different lengths (1,8-diaminooctane; 1,6-diaminohexane and 1,4-diaminobutane) and two types of cross-linkers (1,3,5-benzenetricarbonyl trichloride and melamine). We analyzed how the properties of microcapsules can be tailored changing the design of the shell structure. Fine tuning of the perfume release profiles was obtained. The changes in capsules size and morphology due to visible light irradiation were monitored via light scattering, optical microscopy and atomic force microscopy. Perfume release was 50% faster in the systems prepared with melamine as the cross-linker. Modelling studies were carried out to support the discussion of the experimental results.

6.
Biomater Sci ; 5(10): 1988-1992, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28829453

RESUMEN

3D bioprinting is a new developing technology with lots of promise in tissue engineering and regenerative medicine. Being biocompatible, biodegradable, renewable and cost-effective, cellulosic nanomaterials have recently captured the attention of researchers due to their applicability as inks for 3D bioprinting. Although a number of cellulose-based bioinks have been reported, the potential of cellulose nanofibrils and nanocrystals has not been fully explored yet. This minireview aims at highlighting the use of nanocellulosic materials for 3D bioprinting as an emerging, promising, new research field.


Asunto(s)
Bioimpresión/métodos , Celulosa/química , Tinta , Nanoestructuras , Celulosa/farmacología , Humanos , Ingeniería de Tejidos , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA