Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Blood ; 136(7): 857-870, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403132

RESUMEN

Immunomodulatory drugs, such as thalidomide and related compounds, potentiate T-cell effector functions. Cereblon (CRBN), a substrate receptor of the DDB1-cullin-RING E3 ubiquitin ligase complex, is the only molecular target for this drug class, where drug-induced, ubiquitin-dependent degradation of known "neosubstrates," such as IKAROS, AIOLOS, and CK1α, accounts for their biological activity. Far less clear is whether these CRBN E3 ligase-modulating compounds disrupt the endogenous functions of CRBN. We report that CRBN functions in a feedback loop that harnesses antigen-specific CD8+ T-cell effector responses. Specifically, Crbn deficiency in murine CD8+ T cells augments their central metabolism manifested as elevated bioenergetics, with supraphysiological levels of polyamines, secondary to enhanced glucose and amino acid transport, and with increased expression of metabolic enzymes, including the polyamine biosynthetic enzyme ornithine decarboxylase. Treatment with CRBN-modulating compounds similarly augments central metabolism of human CD8+ T cells. Notably, the metabolic control of CD8+ T cells by modulating compounds or Crbn deficiency is linked to increased and sustained expression of the master metabolic regulator MYC. Finally, Crbn-deficient T cells have augmented antigen-specific cytolytic activity vs melanoma tumor cells, ex vivo and in vivo, and drive accelerated and highly aggressive graft-versus-host disease. Therefore, CRBN functions to harness the activation of CD8+ T cells, and this phenotype can be exploited by treatment with drugs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Linfocitos T CD8-positivos/fisiología , Metabolismo Energético/genética , Activación de Linfocitos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Inmunomodulación/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
JCI Insight ; 8(18)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37581943

RESUMEN

Glutaminolysis is a hallmark of the activation and metabolic reprogramming of T cells. Isotopic tracer analyses of antigen-activated effector CD8+ T cells revealed that glutamine is the principal carbon source for the biosynthesis of polyamines putrescine, spermidine, and spermine. These metabolites play critical roles in activation-induced T cell proliferation, as well as for the production of hypusine, which is derived from spermidine and is covalently linked to the translation elongation factor eukaryotic translation initiation factor 5A (eIF5A). Here, we demonstrated that the glutamine/polyamine/hypusine axis controlled the expression of CD69, an important regulator of tissue-resident memory T cells (Trm). Inhibition of this circuit augmented the development of Trm cells ex vivo and in vivo in the BM, a well-established niche for Trm cells. Furthermore, blocking the polyamine/hypusine axis augmented CD69 expression as well as IFN-γ and TNF-α production in (a) human CD8+ T cells from peripheral blood and sarcoma tumor infiltrating lymphocytes and (b) human CD8+ CAR-T cells. Collectively, these findings support the notion that the polyamine-hypusine circuit can be exploited to modulate Trm cells for therapeutic benefit.


Asunto(s)
Poliaminas , Espermidina , Humanos , Poliaminas/metabolismo , Espermidina/metabolismo , Células T de Memoria , Glutamina/metabolismo , Linfocitos T CD8-positivos/metabolismo
5.
Cancer Res ; 83(23): 3901-3919, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37702657

RESUMEN

Multiple myeloma remains an incurable malignancy due to acquisition of intrinsic programs that drive therapy resistance. Here we report that casein kinase-1δ (CK1δ) and CK1ε are therapeutic targets in multiple myeloma that are necessary to sustain mitochondrial metabolism. Specifically, the dual CK1δ/CK1ε inhibitor SR-3029 had potent in vivo and ex vivo anti-multiple myeloma activity, including against primary multiple myeloma patient specimens. RNA sequencing (RNA-seq) and metabolic analyses revealed inhibiting CK1δ/CK1ε disables multiple myeloma metabolism by suppressing genes involved in oxidative phosphorylation (OxPhos), reducing citric acid cycle intermediates, and suppressing complexes I and IV of the electron transport chain. Finally, sensitivity of multiple myeloma patient specimens to SR-3029 correlated with elevated expression of mitochondrial genes, and RNA-seq from 687 multiple myeloma patient samples revealed that increased CSNK1D, CSNK1E, and OxPhos genes correlate with disease progression and inferior outcomes. Thus, increases in mitochondrial metabolism are a hallmark of multiple myeloma progression that can be disabled by targeting CK1δ/CK1ε. SIGNIFICANCE: CK1δ and CK1ε are attractive therapeutic targets in multiple myeloma whose expression increases with disease progression and connote poor outcomes, and that are necessary to sustain expression of genes directing OxPhos.


Asunto(s)
Quinasa Idelta de la Caseína , Mieloma Múltiple , Humanos , Quinasa Idelta de la Caseína/genética , Quinasa Idelta de la Caseína/metabolismo , Mieloma Múltiple/genética , Supervivencia Celular , Fosforilación , Progresión de la Enfermedad
6.
Cancer Res ; 82(7): 1234-1250, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149590

RESUMEN

MYC family oncoproteins are regulators of metabolic reprogramming that sustains cancer cell anabolism. Normal cells adapt to nutrient-limiting conditions by activating autophagy, which is required for amino acid (AA) homeostasis. Here we report that the autophagy pathway is suppressed by Myc in normal B cells, in premalignant and neoplastic B cells of Eµ-Myc transgenic mice, and in human MYC-driven Burkitt lymphoma. Myc suppresses autophagy by antagonizing the expression and function of transcription factor EB (TFEB), a master regulator of autophagy. Mechanisms that sustained AA pools in MYC-expressing B cells include coordinated induction of the proteasome and increases in AA transport. Reactivation of the autophagy-lysosomal pathway by TFEB disabled the malignant state by disrupting mitochondrial functions, proteasome activity, AA transport, and AA and nucleotide metabolism, leading to metabolic anergy, growth arrest, and apoptosis. This phenotype provides therapeutic opportunities to disable MYC-driven malignancies, including AA restriction and treatment with proteasome inhibitors. SIGNIFICANCE: MYC suppresses TFEB and autophagy and controls amino acid homeostasis by upregulating amino acid transport and the proteasome, and reactivation of TFEB disables the metabolism of MYC-driven tumors.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Lisosomas , Proteínas Proto-Oncogénicas c-myc , Aminoácidos/metabolismo , Animales , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Homeostasis , Humanos , Lisosomas/metabolismo , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética
7.
Blood Cancer Discov ; 2(2): 162-185, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33860275

RESUMEN

MYC oncoproteins regulate transcription of genes directing cell proliferation, metabolism and tumorigenesis. A variety of alterations drive MYC expression in acute myeloid leukemia (AML) and enforced MYC expression in hematopoietic progenitors is sufficient to induce AML. Here we report that AML and myeloid progenitor cell growth and survival rely on MYC-directed suppression of Transcription Factor EB (TFEB), a master regulator of the autophagy-lysosome pathway. Notably, although originally identified as an oncogene, TFEB functions as a tumor suppressor in AML, where it provokes AML cell differentiation and death. These responses reflect TFEB control of myeloid epigenetic programs, by inducing expression of isocitrate dehydrogenase-1 (IDH1) and IDH2, resulting in global hydroxylation of 5-methycytosine. Finally, activating the TFEB-IDH1/IDH2-TET2 axis is revealed as a targetable vulnerability in AML. Thus, epigenetic control by a MYC-TFEB circuit dictates myeloid cell fate and is essential for maintenance of AML.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Isocitrato Deshidrogenasa , Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-myc , Transducción de Señal , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Diferenciación Celular/genética , Epigénesis Genética , Humanos , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Mutación , Proteínas Proto-Oncogénicas c-myc/genética
8.
JCI Insight ; 5(9)2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255769

RESUMEN

Immunosuppressive donor Tregs can prevent graft-versus-host disease (GVHD) or solid-organ allograft rejection. We previously demonstrated that inhibiting STAT3 phosphorylation (pSTAT3) augments FOXP3 expression, stabilizing induced Tregs (iTregs). Here we report that human pSTAT3-inhibited iTregs prevent human skin graft rejection and xenogeneic GVHD yet spare donor antileukemia immunity. pSTAT3-inhibited iTregs express increased levels of skin-homing cutaneous lymphocyte-associated antigen, immunosuppressive GARP and PD-1, and IL-9 that supports tolerizing mast cells. Further, pSTAT3-inhibited iTregs significantly reduced alloreactive conventional T cells, Th1, and Th17 cells implicated in GVHD and tissue rejection and impaired infiltration by pathogenic Th2 cells. Mechanistically, pSTAT3 inhibition of iTregs provoked a shift in metabolism from oxidative phosphorylation (OxPhos) to glycolysis and reduced electron transport chain activity. Strikingly, cotreatment with coenzyme Q10 restored OxPhos in pSTAT3-inhibited iTregs and augmented their suppressive potency. These findings support the rationale for clinically testing the safety and efficacy of metabolically tuned, human pSTAT3-inhibited iTregs to control alloreactive T cells.


Asunto(s)
Rechazo de Injerto , Enfermedad Injerto contra Huésped , Factor de Transcripción STAT3/fisiología , Linfocitos T Reguladores , Animales , Rechazo de Injerto/inmunología , Rechazo de Injerto/metabolismo , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/metabolismo , Humanos , Ratones , Oxidación-Reducción , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
9.
Cell Metab ; 27(1): 3-5, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29320709

RESUMEN

One strategy to improve the potency of adoptive T cell therapy is to augment the function and persistence of anti-tumor T cells. In this issue of Cell Metabolism, Chatterjee et al. (2018) demonstrate that intratumoral CD4+ T cell functions and memory can be improved by targeting a CD38-NAD+-Sirt1-Foxo1 metabolic circuit.


Asunto(s)
NAD+ Nucleosidasa , Neoplasias , ADP-Ribosil Ciclasa 1 , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , NAD
10.
Oncotarget ; 7(50): 83462-83475, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27825143

RESUMEN

Tristetraprolin (TTP) is an RNA-binding protein that post-transcriptionally suppresses gene expression by delivering mRNA cargo to processing bodies (P-bodies) where the mRNA is degraded. TTP functions as a tumor suppressor in a mouse model of B cell lymphoma, and in some human malignancies low TTP expression correlates with reduced survival. Here we report important prognostic and functional roles for TTP in human prostate cancer. First, gene expression analysis of prostate tumors revealed low TTP expression correlates with patients having high-risk Gleason scores and increased biochemical recurrence. Second, in prostate cancer cells with low levels of endogenous TTP, inducible TTP expression inhibits their growth and proliferation, as well as their clonogenic growth. Third, TTP functions as a tumor suppressor in prostate cancer, as forced TTP expression markedly impairs the tumorigenic potential of prostate cancer cells in a mouse xenograft model. Finally, pathway analysis of gene expression data suggested metabolism is altered by TTP expression in prostate tumor cells, and metabolic analyses revealed that such processes are impaired by TTP, including mitochondrial respiration. Collectively, these findings suggest that TTP is an important prognostic indicator for prostate cancer, and augmenting TTP function would effectively disable the metabolism and proliferation of aggressive prostate tumors.


Asunto(s)
Proliferación Celular , Metabolismo Energético , Neoplasias de la Próstata/metabolismo , Tristetraprolina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Metabolismo Energético/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Calicreínas/sangre , Masculino , Ratones Desnudos , Clasificación del Tumor , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transducción de Señal , Factores de Tiempo , Tristetraprolina/genética , Proteínas Supresoras de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Sci Rep ; 5: 13989, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26365306

RESUMEN

Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism - intramitochondrial quality control (IMQC) - is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the respiratory supercomplexes and thus balanced and tunable bioenergetic function. Loss of Oma1 activity leads to a specific destabilization of respiratory supercomplexes and consequently to unbalanced respiration and progressive respiratory decline in yeast. Similarly, experiments in cultured Oma1-deficient mouse embryonic fibroblasts link together impeded supercomplex stability and inability to maintain proper respiration under conditions that require maximal bioenergetic output. Finally, transient knockdown of OMA1 in zebrafish leads to impeded bioenergetics and morphological defects of the heart and eyes. Together, our biochemical and genetic studies in yeast, zebrafish and mammalian cells identify a novel and conserved physiological role for Oma1 protease in fine-tuning of respiratory function. We suggest that this unexpected physiological role is important for cellular bioenergetic plasticity and may contribute to Oma1-associated disease phenotypes in humans.


Asunto(s)
Metaloproteasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Línea Celular , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Metabolismo Energético , Larva/metabolismo , Metaloproteasas/química , Metaloproteasas/genética , Ratones , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Morfolinos/farmacología , Fenotipo , Estabilidad Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Mol Cell Biol ; 35(22): 3866-79, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26351140

RESUMEN

A major goal of cancer research is the identification of tumor-specific vulnerabilities that can be exploited for the development of therapies that are selectively toxic to the tumor. We show here that the transcriptional coactivators peroxisome proliferator-activated receptor gamma coactivator 1ß (PGC1ß) and estrogen-related receptor α (ERRα) are aberrantly expressed in human colon cell lines and tumors. With kinase suppressor of Ras 1 (KSR1) depletion as a reference standard, we used functional signature ontology (FUSION) analysis to identify the γ1 subunit of AMP-activated protein kinase (AMPK) as an essential contributor to PGC1ß expression and colon tumor cell survival. Subsequent analysis revealed that a subunit composition of AMPK (α2ß2γ1) is preferred for colorectal cancer cell survival, at least in part, by stabilizing the tumor-specific expression of PGC1ß. In contrast, PGC1ß and ERRα are not detectable in nontransformed human colon epithelial cells, and depletion of the AMPKγ1 subunit has no effect on their viability. These data indicate that Ras oncogenesis relies on the aberrant activation of a PGC1ß-dependent transcriptional pathway via a specific AMPK isoform.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Portadoras/genética , Colon/patología , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Colon/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Unión al ARN , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
13.
Mol Cell Biol ; 34(18): 3461-72, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25002533

RESUMEN

The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates the activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) signal transduction pathway. KSR1 disruption in mouse embryo fibroblasts (MEFs) abrogates growth factor-induced ERK activation, H-Ras(V12)-induced replicative senescence, and H-Ras(V12)-induced transformation. Caveolin-1 has been primarily described as a major component of the coating structure of caveolae, which can serve as a lipid binding adaptor protein and coordinates the assembly of Ras, Raf, MEK, and ERK. In this study, we show that KSR1 interacts with caveolin-1 and is responsible for MEK and ERK redistribution to caveolin-1-rich fractions. The interaction between KSR1 and caveolin-1 is essential for optimal activation of ERK as a KSR1 mutant unable to interact with caveolin-1 does not efficiently mediate growth factor-induced ERK activation at the early stages of pathway activation. Furthermore, abolishing the KSR1-caveolin-1 interaction increases growth factor demands to promote H-Ras(V12)-induced proliferation and has adverse effects on H-Ras(V12)-induced cellular senescence and transformation. These data show that caveolin-1 is necessary for optimal KSR1-dependent ERK activation by growth factors and oncogenic Ras.


Asunto(s)
Caveolina 1/metabolismo , Transformación Celular Viral , Senescencia Celular , Factor de Crecimiento Epidérmico/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas/metabolismo , Proteínas ras/metabolismo , Animales , Caveolas/metabolismo , Caveolina 1/genética , Células Cultivadas , Embrión de Mamíferos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Proteínas Quinasas/genética , Proteínas ras/genética
14.
Mol Cell Biol ; 32(18): 3718-31, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22801368

RESUMEN

Kinase suppressor of Ras 1 (KSR1) and KSR2 are scaffolds that promote extracellular signal-regulated kinase (ERK) signaling but have dramatically different physiological functions. KSR2(-/-) mice show marked deficits in energy expenditure that cause obesity. In contrast, KSR1 disruption has inconsequential effects on development but dramatically suppresses tumor formation by activated Ras. We examined the role of KSR2 in the generation and maintenance of the transformed phenotype in KSR1(-/-) mouse embryo fibroblasts (MEFs) expressing activated Ras(V12) and in tumor cell lines MIN6 and NG108-15. KSR2 rescued ERK activation and accelerated proliferation in KSR1(-/-) MEFs. KSR2 expression alone induced anchorage-independent growth and synergized with the transforming effects of Ras(V12). Similarly, RNA interference (RNAi) of KSR2 in MIN6 and NG108-15 cells inhibited proliferation and colony formation, with concomitant defects in AMP-activated protein kinase (AMPK) signaling, nutrient metabolism, and metabolic capacity. While constitutive activation of AMPK was sufficient to complement the loss of KSR2 in metabolic signaling and anchorage-independent growth, KSR2 RNAi, MEK inhibition, and expression of a KSR2 mutant unable to interact with ERK demonstrated that mitogen-activated protein (MAP) kinase signaling is dispensable for the transformed phenotype of these cells. These data show that KSR2 is essential to tumor cell energy homeostasis and critical to the integration of mitogenic and metabolic signaling pathways.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Transformación Celular Neoplásica , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Proliferación Celular , Homeostasis , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Proteínas Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño
15.
Cell Metab ; 10(5): 366-78, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19883615

RESUMEN

Kinase suppressors of Ras 1 and 2 (KSR1 and KSR2) function as molecular scaffolds to potently regulate the MAP kinases ERK1/2 and affect multiple cell fates. Here we show that KSR2 interacts with and modulates the activity of AMPK. KSR2 regulates AMPK-dependent glucose uptake and fatty acid oxidation in mouse embryonic fibroblasts and glycolysis in a neuronal cell line. Disruption of KSR2 in vivo impairs AMPK-regulated processes affecting fatty acid oxidation and thermogenesis to cause obesity. Despite their increased adiposity, ksr2(-/-) mice are hypophagic and hyperactive but expend less energy than wild-type mice. In addition, hyperinsulinemic-euglycemic clamp studies reveal that ksr2(-/-) mice are profoundly insulin resistant. The expression of genes mediating oxidative phosphorylation is also downregulated in the adipose tissue of ksr2(-/-) mice. These data demonstrate that ksr2(-/-) mice are highly efficient in conserving energy, revealing a novel role for KSR2 in AMPK-mediated regulation of energy metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Resistencia a la Insulina , Proteínas Serina-Treonina Quinasas/metabolismo , Tejido Adiposo/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glucólisis/fisiología , Resistencia a la Insulina/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Termogénesis/fisiología
16.
J Biol Chem ; 280(19): 18771-81, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15734743

RESUMEN

Mdm2 directly regulates the p53 tumor suppressor. However, Mdm2 also has p53-independent activities, and the pathways that mediate these functions are unresolved. Here we report the identification of a specific association of Mdm2 with Mre11, Nbs1, and Rad50, a DNA double strand break repair complex. Mdm2 bound to the Mre11-Nbs1-Rad50 complex in primary cells and in cells containing inactivated p53 or p14/p19ARF, a regulator of Mdm2. Further analysis revealed that Mdm2 directly bound to Nbs1 but not to Mre11 or Rad50. Amino acids 198-314 of Mdm2 were required for Mdm2/Nbs1 association, and neither the N terminus forkhead-associated and breast cancer C-terminal domains nor the C terminus Mre11 binding domain of Nbs1 mediated the interaction of Nbs1 with Mdm2. Mdm2 co-localized with Nbs1 to sites of DNA damage following gamma-irradiation. Notably, Mdm2 overexpression inhibited DNA double strand break repair, and this was independent of p53 and ARF, the alternative reading frame of the Ink4alocus. The delay in DNA repair imposed by Mdm2 required the Nbs1 binding domain of Mdm2, but the ubiquitin ligase domain in Mdm2 was dispensable. Therefore, Nbs1 is a novel p53-independent Mdm2 binding protein and links Mdm2 to the Mre11-Nbs1-Rad50-regulated DNA repair response.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Reparación del ADN , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ácido Anhídrido Hidrolasas , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Enzimas Reparadoras del ADN/metabolismo , ADN Complementario/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Rayos gamma , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Células K562 , Proteína Homóloga de MRE11 , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Células 3T3 NIH , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-mdm2 , Homología de Secuencia de Aminoácido , Tinción con Nitrato de Plata , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA