Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Bioinformatics ; 38(10): 2742-2748, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561203

RESUMEN

MOTIVATION: After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here, we address the performance of AlphaFold2 predictions obtained through ColabFold under this ensemble paradigm. RESULTS: Using a curated collection of apo-holo pairs of conformers, we found that AlphaFold2 predicts the holo form of a protein in ∼70% of the cases, being unable to reproduce the observed conformational diversity with the same error for both conformers. More importantly, we found that AlphaFold2's performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions. AVAILABILITY AND IMPLEMENTATION: Data and code used in this manuscript are publicly available at https://gitlab.com/sbgunq/publications/af2confdiv-oct2021. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas , Unión Proteica , Conformación Proteica , Proteínas/química
2.
Phys Chem Chem Phys ; 25(17): 12097-12106, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37133823

RESUMEN

Organic dendrimers with π conjugated systems are capable of capturing solar energy as a renewable source for human use. Nonetheless, further study regarding the relationship between the structure and the energy transfer mechanism in these types of molecules is still necessary. In this work, nonadiabatic excited state molecular dynamics (NEXMD) were carried out to study the intra- and inter-branch exciton migration in two tetra-branched dendrimers, C(dSSB)4 and Ad(BuSSB)4, which differ in their respective carbon and adamantane core. Both systems undergo a ladder decay mechanism between excited states, with back-and-forth transitions between S1 and S2. Despite presenting very similar absorption-emission spectra, differences in the photoinduced energy relaxation are observed. The size of the core impacts the inter-branch energy exchange and transient exciton localization/delocalization, which ultimately condition the relative energy relaxation rates, being faster in Ad(BuSSB)4 with respect to C(dSSB)4. Nevertheless, the photoinduced processes lead to a progressive final exciton-self-trapping in one of the branches of both dendrimers, which is a desirable feature in organic photovoltaic applications. Our results can inspire the design of more efficient dendrimers with the desired magnitude of inter-branch exciton exchange and localization/delocalization according to changes in their core.

3.
Nucleic Acids Res ; 49(D1): D452-D457, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33237313

RESUMEN

The RepeatsDB database (URL: https://repeatsdb.org/) provides annotations and classification for protein tandem repeat structures from the Protein Data Bank (PDB). Protein tandem repeats are ubiquitous in all branches of the tree of life. The accumulation of solved repeat structures provides new possibilities for classification and detection, but also increasing the need for annotation. Here we present RepeatsDB 3.0, which addresses these challenges and presents an extended classification scheme. The major conceptual change compared to the previous version is the hierarchical classification combining top levels based solely on structural similarity (Class > Topology > Fold) with two new levels (Clan > Family) requiring sequence similarity and describing repeat motifs in collaboration with Pfam. Data growth has been addressed with improved mechanisms for browsing the classification hierarchy. A new UniProt-centric view unifies the increasingly frequent annotation of structures from identical or similar sequences. This update of RepeatsDB aligns with our commitment to develop a resource that extracts, organizes and distributes specialized information on tandem repeat protein structures.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Secuencias Repetitivas de Aminoácido , Secuencias Repetidas en Tándem , Ontología de Genes , Células HEK293 , Células HeLa , Humanos , Reproducibilidad de los Resultados , Estadística como Asunto , Interfaz Usuario-Computador
4.
J Comput Chem ; 43(6): 391-401, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34962296

RESUMEN

Dynamics of protein cavities associated with protein fluctuations and conformational plasticity is essential for their biological function. NMR ensembles, molecular dynamics (MD) simulations, and normal mode analysis (NMA) provide appropriate frameworks to explore functionally relevant protein dynamics and cavity changes relationships. Within this context, we have recently developed analysis of null areas (ANA), an efficient method to calculate cavity volumes. ANA is based on a combination of algorithms that guarantees its robustness against numerical differentiations. This is a unique feature with respect to other methods. Herein, we present an updated and improved version that expands it use to quantify changes in cavity features, like volume and flexibility, due to protein structural distortions performed on predefined biologically relevant directions, for example, directions of largest contribution to protein fluctuations (principal component analysis [PCA modes]) obtained by MD simulations or ensembles of NMR structures, collective NMA modes or any other direction of motion associated with specific conformational changes. A web page has been developed where its facilities are explained in detail. First, we show that ANA can be useful to explore gradual changes of cavity volume and flexibility associated with protein ligand binding. Secondly, we perform a comparison study of the extent of variability between protein backbone structural distortions, and changes in cavity volumes and flexibilities evaluated for an ensemble of NMR active and inactive conformers of the epidermal growth factor receptor structures. Finally, we compare changes in size and flexibility between sets of NMR structures for different homologous chains of dynein.


Asunto(s)
Química Computacional , Receptores ErbB/química , Simulación de Dinámica Molecular , Modelos Moleculares , Conformación Proteica
5.
Chem Rev ; 120(4): 2215-2287, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32040312

RESUMEN

Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.

6.
Phys Chem Chem Phys ; 24(39): 24095-24104, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178044

RESUMEN

Cycloparaphenylenes, being the smallest segments of carbon nanotubes, have emerged as prototypes of the simplest carbon nanohoops. Their unique structure-dynamics-optical properties relationships have motivated a wide variety of synthesis of new related nanohoop species. Studies of how chemical changes, introduced in these new materials, lead to systems with new structural, dynamics and optical properties, expand their functionalities for optoelectronics applications. Herein, we study the effect that conjugation extension of a cycloparaphenylene through the introduction of a satellite tetraphenyl substitution has on its structural and dynamical properties. Our non-adiabatic excited state molecular dynamics simulations suggest that this substitution accelerates the electronic relaxation from the high-energy band to the lowest excited state. This is partially due to efficient conjugation achieved between specific phenyl units as introduced by the tetraphenyl substitution. We observe a particular exciton redistribution during relaxation, in which the tetraphenyl substitution plays a significant role. As a result, an efficient inter-band energy transfer takes place. Besides, the observed phonon-exciton interplay induces a significant exciton self-trapping. Our results encourage and guide the future studies of new phenyl substitutions in carbon nanorings with desired optoelectronic properties.

7.
J Phys Chem A ; 126(5): 733-741, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35084863

RESUMEN

Perylene diimide (PDI) represents a prototype material for organic optoelectronic devices because of its strong optical absorbance, chemical stability, efficient energy transfer, and optical and chemical tunability. Herein, we analyze in detail the vibronic relaxation of its photoexcitation using nonadiabatic excited-state molecular dynamics simulations. We find that after the absorption of a photon, which excites the electron to the second excited state, S2, induced vibronic dynamics features persistent modulations in the spatial localization of electronic and vibrational excitations. These energy exchanges are dictated by strong vibronic couplings that overcome structural disorders and thermal fluctuations. Specifically, the electronic wavefunction periodically swaps between localizations on the right and left sides of the molecule. Within 1 ps of such dynamics, a nonradiative transition to the lowest electronic state, S1, takes place, resulting in a complete delocalization of the wavefunction. The observed vibronic dynamics emerges following the electronic energy deposition in the direction that excites a combination of two dominant vibrational normal modes. This behavior is maintained even with a chemical substitution that breaks the symmetry of the molecule. We believe that our findings elucidate the nature of the complex dynamics of the optically excited states and, therefore, contribute to the development of tunable functionalities of PDIs and their derivatives.

8.
J Phys Chem A ; 125(38): 8404-8416, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34542292

RESUMEN

We examine the redistribution of energy between electronic and vibrational degrees of freedom that takes place between a π-conjugated oligomer, a phenylene-butadiynylene, and two identical boron-dipyrromethene (bodipy) end-caps using femtosecond transient absorption spectroscopy, single-molecule spectroscopy, and nonadiabatic excited-state molecular dynamics (NEXMD) modeling techniques. The molecular structure represents an excitonic seesaw in that the excitation energy on the oligomer backbone can migrate to either one end-cap or the other, but not to both. The NEXMD simulations closely reproduce the characteristic time scale for redistribution of electronic and vibrational energy of 2.2 ps and uncover the vibrational modes contributing to the intramolecular relaxation. The calculations indicate that the dihedral angle between the bodipy dye and the oligomer change upon excitation of the oligomer. Single-molecule experiments reveal a difference in photoluminescence lifetime of the bodipy dyes depending on whether they are excited by direct absorption or by redistribution of energy from the backbone. This difference in lifetime may be attributed to the difference in dihedral angle. The simulations also suggest that a strong coupling can occur between the two end-caps, giving rise to a reversible shuttling of excitation energy between them. Strong coupling should lead to a pronounced loss in polarization memory of the fluorescence since the oligomer backbone tends to be slightly distorted and the two bodipy transition dipoles have different orientations. A sensitive single-molecule technique is presented to test for such coupling. However, although redistribution of electronic and vibrational energy between the end-caps can occur, it appears to be unidirectional and irreversible, suggesting that an additional localization mechanism is at play which is, as yet, not fully accounted for in the simulations.

9.
J Chem Inf Model ; 60(6): 3068-3080, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32216314

RESUMEN

Proteins in their native states can be represented as ensembles of conformers in dynamical equilibrium. Thermal fluctuations are responsible for transitions between these conformers. Normal-modes analysis (NMA) using elastic network models (ENMs) provides an efficient procedure to explore global dynamics of proteins commonly associated with conformational transitions. In the present work, we present an iterative approach to explore protein conformational spaces by introducing structural distortions according to their equilibrium dynamics at room temperature. The approach can be used either to perform unbiased explorations of conformational space or to explore guided pathways connecting two different conformations, e.g., apo and holo forms. In order to test its performance, four proteins with different magnitudes of structural distortions upon ligand binding have been tested. In all cases, the conformational selection model has been confirmed and the conformational space between apo and holo forms has been encompassed. Different strategies have been tested that impact on the efficiency either to achieve a desired conformational change or to achieve a balanced exploration of the protein conformational multiplicity.


Asunto(s)
Proteínas , Conformación Proteica
10.
J Chem Phys ; 153(24): 244117, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33380092

RESUMEN

We utilize first-principles theory to investigate photo-induced excited-state dynamics of functionalized perylene diimide. This class of materials is highly suitable for solar energy conversion because of the strong optical absorbance, efficient energy transfer, and chemical tunability. We couple time-dependent density functional theory to a recently developed time-resolved non-adiabatic dynamics approach based on a semi-empirical description. By studying the monomer and dimer, we focus on the role stacking plays on the time-scales associated with excited-state non-radiative relaxation from a high excitonic state to the lowest energy exciton. We predict that the time-scale for energy conversion in the dimer is significantly faster than that in the monomer when equivalent excited states are accounted for. Additionally, for the dimer, the decay from the second to the nearly degenerate lowest energy excited-state involves two time-scales: a rapid decay on the order of ∼10 fs followed by a slower decay of ∼100 fs. Analysis of the spatial localization of the electronic transition density during the internal conversion process points out the existence of localized states on individual monomers, indicating that the strength of thermal fluctuations exceeds electronic couplings between the states such that the exciton hops between localized states throughout the simulation.

11.
J Chem Phys ; 153(24): 244114, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33380074

RESUMEN

Simulation of electronic dynamics in realistically large molecular systems is a demanding task that has not yet achieved the same level of quantitative prediction already realized for its static counterpart. This is particularly true for processes occurring beyond the Born-Oppenheimer regime. Non-adiabatic molecular dynamics (NAMD) simulations suffer from two convoluted sources of error: numerical algorithms for dynamics and electronic structure calculations. While the former has gained increasing attention, particularly addressing the validity of ad hoc methodologies, the effect of the latter remains relatively unexplored. Indeed, the required accuracy for electronic structure calculations to reach quantitative agreement with experiment in dynamics may be even more strict than that required for static simulations. Here, we address this issue by modeling the electronic energy transfer in a donor-acceptor-donor (D-A-D) molecular light harvesting system using fewest switches surface hopping NAMD simulations. In the studied system, time-resolved experimental measurements deliver complete information on spectra and energy transfer rates. Subsequent modeling shows that the calculated electronic transition energies are "sufficiently good" to reproduce experimental spectra but produce over an order of magnitude error in simulated dynamical rates. We further perform simulations using artificially shifted energy gaps to investigate the complex relationship between transition energies and modeled dynamics to understand factors affecting non-radiative relaxation and energy transfer rates.

12.
Eur Biophys J ; 48(6): 559-568, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31273390

RESUMEN

According to the generalized conformational selection model, ligand binding involves the co-existence of at least two conformers with different ligand-affinities in a dynamical equilibrium. Conformational transitions between them should be guaranteed by intramolecular vibrational dynamics associated to each conformation. These motions are, therefore, related to the biological function of a protein. Positions whose mutations are found to alter these vibrations the most can be defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. In a previous study, we have shown that these positions are evolutionarily conserved. They correspond to buried aliphatic residues mostly localized in regular structured regions of the protein like ß-sheets and α-helices. In the present paper, we perform a network analysis of these key positions for a large dataset of paired protein structures in the ligand-free and ligand-bound form. We observe that networks of interactions between these key positions present larger and more integrated networks with faster transmission of the information. Besides, networks of residues result that are robust to conformational changes. Our results reveal that the conformational diversity of proteins seems to be guaranteed by a network of strongly interconnected key positions rather than individual residues.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Vibración
13.
J Comput Chem ; 39(29): 2472-2480, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30298935

RESUMEN

Epidermal growth factor receptor (EGFR) is a prototypical cell-surface receptor that plays a key role in the regulation of cellular signaling, proliferation and differentiation. Mutations of its kinase domain have been associated with the development of a variety of cancers and, therefore, it has been the target of drug design. Single amino acid substitutions (SASs) in this domain have been proven to alter the equilibrium of pre-existing conformer populations. Despite the advances in structural descriptions of its so-called active and inactive conformations, the associated dynamics aspects that characterize them have not been thoroughly studied yet. As the dynamic behaviors and molecular motions of proteins are important for a complete understanding of their structure-function relationships we present a novel procedure, using (or based on) normal mode analysis, to identify the collective dynamics shared among different conformers in EGFR kinase. The method allows the comparison of patterns of low-frequency vibrational modes defining representative directions of motions. Our procedure is able to emphasize the main similarities and differences between the collective dynamics of different conformers. In the case of EGFR kinase, two representative directions of motions have been found as dynamics fingerprints of the active conformers. Protein motion along both directions reveals to have a significant impact on the cavity volume of the main pocket of the active site. Otherwise, the inactive conformers exhibit a more heterogeneous distribution of collective motions. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Simulación de Dinámica Molecular , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Conformación Proteica
14.
PLoS Comput Biol ; 13(2): e1005398, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28192432

RESUMEN

Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call "rigid" (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions.


Asunto(s)
Modelos Químicos , Modelos Estadísticos , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas/química , Proteínas/ultraestructura , Relación Estructura-Actividad
15.
Phys Chem Chem Phys ; 20(26): 17762-17772, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29917032

RESUMEN

We present a new implementation of the Ab Initio Multiple Cloning (AIMC) method, which is applied for non-adiabatic excited-state molecular dynamics simulations of photoinduced processes in conjugated molecules. Within our framework, the multidimensional wave-function is decomposed into a superposition of a number of Gaussian coherent states guided by Ehrenfest trajectories that are suited to clone and swap their electronic amplitudes throughout the simulation. New generalized cloning criteria are defined and tested. Because of sharp changes of the electronic states, which are common for conjugated polymers, the electronic parts of the Gaussian coherent states are represented in the Time Dependent Diabatic Basis (TDDB). The input to these simulations in terms of the excited-state energies, gradients and non-adiabatic couplings, is calculated on-the-fly using the Collective Electron Oscillator (CEO) approach. As a test case, we consider the photoinduced unidirectional electronic and vibrational energy transfer between two- and three-ring linear poly(phenylene ethynylene) units linked by meta-substitution. The effects of the cloning procedure on electronic and vibrational coherence, relaxation and unidirectional energy transfer between dendritic branches are discussed.

16.
PLoS Comput Biol ; 12(3): e1004775, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27008419

RESUMEN

Conformational diversity of the native state plays a central role in modulating protein function. The selection paradigm sustains that different ligands shift the conformational equilibrium through their binding to highest-affinity conformers. Intramolecular vibrational dynamics associated to each conformation should guarantee conformational transitions, which due to its importance, could possibly be associated with evolutionary conserved traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide the required information to explore these features. Herein, we present a novel procedure to identify key positions sustaining the conformational diversity associated to ligand binding. The method is applied to an adequate refined dataset of 188 paired protein structures in their bound and unbound forms. Firstly, normal modes most involved in the conformational change are selected according to their corresponding overlap with structural distortions introduced by ligand binding. The subspace defined by these modes is used to analyze the effect of simulated point mutations on preserving the conformational diversity of the protein. We find a negative correlation between the effects of mutations on these normal mode subspaces associated to ligand-binding and position-specific evolutionary conservations obtained from multiple sequence-structure alignments. Positions whose mutations are found to alter the most these subspaces are defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. These positions are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regular structural regions of the protein like ß-sheets and α-helix.


Asunto(s)
Secuencia Conservada/genética , Variación Genética/genética , Modelos Genéticos , Modelos Moleculares , Proteínas/genética , Proteínas/ultraestructura , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Secuencia de Bases , Sitios de Unión , Simulación por Computador , Evolución Molecular , Modelos Químicos , Datos de Secuencia Molecular , Mutación Puntual/genética , Unión Proteica , Proteínas/química , Análisis de Secuencia , Relación Estructura-Actividad
17.
Phys Chem Chem Phys ; 19(14): 9478-9484, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28338127

RESUMEN

In the last decade, recent synthetic advances have launched carbon-based π-conjugated hoops to the forefront of theoretical and experimental investigation not only for their potential use as bottom-up templates for carbon nanotube (CNT) growth, but also for the interesting excitonic effects arising from the cyclic geometry, unique π-system orientation, and unusual electronic interactions and couplings. In particular, cyclic materials based on pyrene, a common component in organic electronics, are popular candidates for the future design of π-conjugated nanorings for optoelectronic applications. Understanding the photophysical response in cyclic oligopyrenes can be achieved using non-adiabatic excited state molecular dynamics (NA-ESMD). Through NA-ESMD modeling, we reveal details of the nonradiative relaxation processes in the circular pyrene tetramer [4]cyclo-2,7-pyrenylene ([4]CPY) where we find that the strong non-adiabatic coupling combined with the dense manifold of excited states creates an internal conversion mechanism dominated by ultrafast sequential quantum transitions. However, we observe two long-lived electronic excited states that introduce a phonon bottleneck in the electronic relaxation process. In fact, the timescale for the electronic relaxation is almost exclusively dominated by the lifetimes of the long-lived states. We find that the states associated with the phonon bottleneck are separated from lower energy states by large energy gaps and are characterized by localization on a single pyrene unit resulting in a spatial mismatch with strongly delocalized neighboring states.

18.
Phys Chem Chem Phys ; 18(15): 10028-40, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27004611

RESUMEN

Photoinduced dynamics of electronic and vibrational unidirectional energy transfer between meta-linked building blocks in a phenylene ethynylene dendrimer is simulated using a multiconfigurational Ehrenfest in time-dependent diabatic basis (MCE-TDDB) method, a new variant of the MCE approach developed by us for dynamics involving multiple electronic states with numerous abrupt crossings. Excited-state energies, gradients and non-adiabatic coupling terms needed for dynamics simulation are calculated on-the-fly using the Collective Electron Oscillator (CEO) approach. A comparative analysis of our results obtained using MCE-TDDB, the conventional Ehrenfest method and the surface-hopping approach with and without decoherence corrections is presented.

19.
J Am Chem Soc ; 137(36): 11637-44, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26122872

RESUMEN

Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment-theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.


Asunto(s)
Dendrímeros/química , Transferencia de Energía
20.
Acc Chem Res ; 47(4): 1155-64, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24673100

RESUMEN

To design functional photoactive materials for a variety of technological applications, researchers need to understand their electronic properties in detail and have ways to control their photoinduced pathways. When excited by photons of light, organic conjugated materials (OCMs) show dynamics that are often characterized by large nonadiabatic (NA) couplings between multiple excited states through a breakdown of the Born-Oppenheimer (BO) approximation. Following photoexcitation, various nonradiative intraband relaxation pathways can lead to a number of complex processes. Therefore, computational simulation of nonadiabatic molecular dynamics is an indispensable tool for understanding complex photoinduced processes such as internal conversion, energy transfer, charge separation, and spatial localization of excitons. Over the years, we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework that efficiently and accurately describes photoinduced phenomena in extended conjugated molecular systems. We use the fewest-switches surface hopping (FSSH) algorithm to treat quantum transitions among multiple adiabatic excited state potential energy surfaces (PESs). Extended molecular systems often contain hundreds of atoms and involve large densities of excited states that participate in the photoinduced dynamics. We can achieve an accurate description of the multiple excited states using the configuration interaction single (CIS) formalism with a semiempirical model Hamiltonian. Analytical techniques allow the trajectory to be propagated "on the fly" using the complete set of NA coupling terms and remove computational bottlenecks in the evaluation of excited-state gradients and NA couplings. Furthermore, the use of state-specific gradients for propagation of nuclei on the native excited-state PES eliminates the need for simplifications such as the classical path approximation (CPA), which only uses ground-state gradients. Thus, the NA-ESMD methodology offers a computationally tractable route for simulating hundreds of atoms on ~10 ps time scales where multiple coupled excited states are involved. In this Account, we review recent developments in the NA-ESMD modeling of photoinduced dynamics in extended conjugated molecules involving multiple coupled electronic states. We have successfully applied the outlined NA-ESMD framework to study ultrafast conformational planarization in polyfluorenes where the rate of torsional relaxation can be controlled based on the initial excitation. With the addition of the state reassignment algorithm to identify instances of unavoided crossings between noninteracting PESs, NA-ESMD can now be used to study systems in which these so-called trivial unavoided crossings are expected to predominate. We employ this technique to analyze the energy transfer between poly(phenylene vinylene) (PPV) segments where conformational fluctuations give rise to numerous instances of unavoided crossings leading to multiple pathways and complex energy transfer dynamics that cannot be described using a simple Förster model. In addition, we have investigated the mechanism of ultrafast unidirectional energy transfer in dendrimers composed of poly(phenylene ethynylene) (PPE) chromophores and have demonstrated that differential nuclear motion favors downhill energy transfer in dendrimers. The use of native excited-state gradients allows us to observe this feature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA